Optimal approximation with sparsely connected deep neural networks H Bolcskei, P Grohs, G Kutyniok, P Petersen SIAM Journal on Mathematics of Data Science 1 (1), 8-45, 2019 | 220 | 2019 |

A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations P Grohs, F Hornung, A Jentzen, P Von Wurstemberger Memoirs of the American Mathematical Society, 2018 | 161 | 2018 |

Analysis of the generalization error: Empirical risk minimization over deep artificial neural networks overcomes the curse of dimensionality in the numerical approximation of … J Berner, P Grohs, A Jentzen SIAM Journal on Mathematics of Data Science 2 (3), 631-657, 2020 | 135 | 2020 |

Deep neural network approximation theory D Elbrächter, D Perekrestenko, P Grohs, H Bölcskei IEEE Transactions on Information Theory, 2019 | 133 | 2019 |

Solving the Kolmogorov PDE by means of deep learning C Beck, S Becker, P Grohs, N Jaafari, A Jentzen Journal of Scientific Computing 88 (3), 1-28, 2021 | 129 | 2021 |

Laguerre minimal surfaces, isotropic geometry and linear elasticity H Pottmann, P Grohs, NJ Mitra Advances in computational mathematics 31 (4), 391-419, 2009 | 87 | 2009 |

DNN expression rate analysis of high-dimensional PDEs: Application to option pricing D Elbrächter, P Grohs, A Jentzen, C Schwab Constructive Approximation 55 (1), 3-71, 2022 | 83 | 2022 |

Parabolic molecules P Grohs, G Kutyniok Foundations of Computational Mathematics 14 (2), 299-337, 2014 | 83 | 2014 |

Continuous shearlet frames and resolution of the wavefront set P Grohs Monatshefte für Mathematik 164 (4), 393-426, 2011 | 66 | 2011 |

Stable phase retrieval in infinite dimensions R Alaifari, I Daubechies, P Grohs, R Yin Foundations of Computational Mathematics 19 (4), 869-900, 2019 | 58 | 2019 |

ε-subgradient algorithms for locally Lipschitz functions on Riemannian manifolds P Grohs, S Hosseini Advances in Computational Mathematics 42 (2), 333-360, 2016 | 52 | 2016 |

Smoothness properties of Lie group subdivision schemes J Wallner, EN Yazdani, P Grohs Multiscale modeling & simulation 6 (2), 493-505, 2007 | 49 | 2007 |

Phase retrieval: uniqueness and stability P Grohs, S Koppensteiner, M Rathmair SIAM Review 62 (2), 301-350, 2020 | 45 | 2020 |

A general proximity analysis of nonlinear subdivision schemes P Grohs SIAM Journal on Mathematical Analysis 42 (2), 729-750, 2010 | 45 | 2010 |

The modern mathematics of deep learning J Berner, P Grohs, G Kutyniok, P Petersen arXiv preprint arXiv:2105.04026, 2021 | 44 | 2021 |

Phase retrieval in the general setting of continuous frames for Banach spaces R Alaifari, P Grohs SIAM journal on mathematical analysis 49 (3), 1895-1911, 2017 | 43 | 2017 |

Optimal a priori discretization error bounds for geodesic finite elements P Grohs, H Hardering, O Sander Foundations of Computational Mathematics 15 (6), 1357-1411, 2015 | 42 | 2015 |

Stable Gabor phase retrieval and spectral clustering P Grohs, M Rathmair Communications on Pure and Applied Mathematics 72 (5), 981-1043, 2019 | 40 | 2019 |

Group testing for SARS-CoV-2 allows for up to 10-fold efficiency increase across realistic scenarios and testing strategies CM Verdun, T Fuchs, P Harar, D Elbrächter, DS Fischer, J Berner, ... Frontiers in Public Health, 1205, 2021 | 38 | 2021 |

Interpolatory wavelets for manifold-valued data P Grohs, J Wallner Applied and Computational Harmonic Analysis 27 (3), 325-333, 2009 | 37 | 2009 |