Follow
John Kirchenbauer
Title
Cited by
Cited by
Year
A watermark for large language models
J Kirchenbauer, J Geiping, Y Wen, J Katz, I Miers, T Goldstein
International Conference on Machine Learning, 17061-17084, 2023
7302023
Baseline defenses for adversarial attacks against aligned language models
N Jain, A Schwarzschild, Y Wen, G Somepalli, J Kirchenbauer, P Chiang, ...
arXiv preprint arXiv:2309.00614, 2023
370*2023
Hard prompts made easy: Gradient-based discrete optimization for prompt tuning and discovery
Y Wen, N Jain, J Kirchenbauer, M Goldblum, J Geiping, T Goldstein
Advances in Neural Information Processing Systems 36, 51008-51025, 2023
2592023
On the reliability of watermarks for large language models
J Kirchenbauer, J Geiping, Y Wen, M Shu, K Saifullah, K Kong, ...
arXiv preprint arXiv:2306.04634, 2023
185*2023
Tree-ring watermarks: Fingerprints for diffusion images that are invisible and robust
Y Wen, J Kirchenbauer, J Geiping, T Goldstein
arXiv preprint arXiv:2305.20030, 2023
170*2023
Neftune: Noisy embeddings improve instruction finetuning
N Jain, P Chiang, Y Wen, J Kirchenbauer, HM Chu, G Somepalli, ...
International Conference on Learning Representations (ICLR) 2024, 2024
86*2024
GOAT: A global transformer on large-scale graphs
K Kong, J Chen, J Kirchenbauer, R Ni, CB Bruss, T Goldstein
International Conference on Machine Learning, 17375-17390, 2023
642023
Bring Your Own Data! Self-Sensitivity Evaluation for Large Language Models
N Jain, K Saifullah, Y Wen, J Kirchenbauer, M Shu, A Saha, M Goldblum, ...
First Conference on Language Modeling, 0
24*
A closer look at distribution shifts and out-of-distribution generalization on graphs
M Ding, K Kong, J Chen, J Kirchenbauer, M Goldblum, D Wipf, F Huang, ...
222021
Transformers can do arithmetic with the right embeddings
S McLeish, A Bansal, A Stein, N Jain, J Kirchenbauer, B Bartoldson, ...
Advances in Neural Information Processing Systems 37, 108012-108041, 2024
21*2024
Be like a goldfish, don't memorize! mitigating memorization in generative llms
A Hans, J Kirchenbauer, Y Wen, N Jain, H Kazemi, P Singhania, S Singh, ...
Advances in Neural Information Processing Systems 37, 24022-24045, 2024
192024
Genqa: Generating millions of instructions from a handful of prompts
J Chen, R Qadri, Y Wen, N Jain, J Kirchenbauer, T Zhou, T Goldstein
arXiv preprint arXiv:2406.10323, 2024
132024
Lmd3: Language model data density dependence
J Kirchenbauer, G Honke, G Somepalli, J Geiping, D Ippolito, K Lee, ...
arXiv preprint arXiv:2405.06331, 2024
82024
Scaling up Test-Time Compute with Latent Reasoning: A Recurrent Depth Approach
J Geiping, S McLeish, N Jain, J Kirchenbauer, S Singh, BR Bartoldson, ...
arXiv preprint arXiv:2502.05171, 2025
72025
Optune: Efficient online preference tuning
L Chen, J Chen, C Liu, J Kirchenbauer, D Soselia, C Zhu, T Goldstein, ...
arXiv preprint arXiv:2406.07657, 2024
32024
What is Your Metric Telling You? Evaluating Classifier Calibration under Context-Specific Definitions of Reliability
J Kirchenbauer, J Oaks, E Heim
32022
How to do a vocab swap? a study of embedding replacement for pre-trained transformers
N Jain, J Kirchenbauer, J Geiping, T Goldstein
22022
Democratizing AI: Open-source Scalable LLM Training on GPU-based Supercomputers
S Singh, P Singhania, A Ranjan, J Kirchenbauer, J Geiping, Y Wen, ...
SC24: International Conference for High Performance Computing, Networking …, 2024
12024
When Can You Get Away with Low Memory Adam?
DS Kalra, J Kirchenbauer, M Barkeshli, T Goldstein
arXiv preprint arXiv:2503.01843, 2025
2025
Exploiting Sparsity for Long Context Inference: Million Token Contexts on Commodity GPUs
R Synk, M Hoover, J Kirchenbauer, N Jain, A Stein, M Shu, JM Sanchez, ...
arXiv preprint arXiv:2502.06766, 2025
2025
The system can't perform the operation now. Try again later.
Articles 1–20