Follow
Heather J. Kulik
Title
Cited by
Cited by
Year
Density Functional Theory in Transition-Metal Chemistry: A Self-Consistent Hubbard Approach
HJ Kulik, M Cococcioni, DA Scherlis, N Marzari
Physical Review Letters 97 (10), 103001, 2006
5762006
Understanding the diversity of the metal-organic framework ecosystem
SM Moosavi, A Nandy, KM Jablonka, D Ongari, JP Janet, PG Boyd, Y Lee, ...
Nature communications 11 (1), 1-10, 2020
2232020
Critical knowledge gaps in mass transport through single-digit nanopores: a review and perspective
S Faucher, N Aluru, MZ Bazant, D Blankschtein, AH Brozena, J Cumings, ...
The Journal of Physical Chemistry C 123 (35), 21309-21326, 2019
2222019
Protection of tissue physicochemical properties using polyfunctional crosslinkers
YG Park, CH Sohn, R Chen, M McCue, DH Yun, GT Drummond, T Ku, ...
Nature biotechnology 37 (1), 73-83, 2019
2152019
Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer
CE Diesendruck, GI Peterson, HJ Kulik, JA Kaitz, BD Mar, PA May, ...
Nature chemistry 6 (7), 623-628, 2014
2152014
Resolving transition metal chemical space: Feature selection for machine learning and structure–property relationships
JP Janet, HJ Kulik
The Journal of Physical Chemistry A 121 (46), 8939-8954, 2017
1812017
Predicting electronic structure properties of transition metal complexes with neural networks
JP Janet, HJ Kulik
Chemical Science 8 (7), 5137-5152, 2017
1722017
How large should the QM region be in QM/MM calculations? The case of catechol O-methyltransferase
HJ Kulik, J Zhang, JP Klinman, TJ Martinez
The Journal of Physical Chemistry B 120 (44), 11381-11394, 2016
1692016
Perspective: Treating electron over-delocalization with the DFT+ U method
HJ Kulik
The Journal of chemical physics 142 (24), 240901, 2015
1672015
Accelerating chemical discovery with machine learning: simulated evolution of spin crossover complexes with an artificial neural network
JP Janet, L Chan, HJ Kulik
The Journal of Physical Chemistry Letters 9 (5), 1064-1071, 2018
1632018
A quantitative uncertainty metric controls error in neural network-driven chemical discovery
JP Janet, C Duan, T Yang, A Nandy, HJ Kulik
Chemical science 10 (34), 7913-7922, 2019
1412019
molSimplify: A toolkit for automating discovery in inorganic chemistry
EI Ioannidis, TZH Gani, HJ Kulik
Journal of computational chemistry 37 (22), 2106-2117, 2016
1272016
Understanding and Breaking Scaling Relations in Single-Site Catalysis: Methane to Methanol Conversion by FeIV=O
TZH Gani, HJ Kulik
ACS Catalysis 8 (2), 975-986, 2018
1232018
Ab initio quantum chemistry for protein structures
HJ Kulik, N Luehr, IS Ufimtsev, TJ Martinez
The Journal of Physical Chemistry B 116 (41), 12501-12509, 2012
1182012
Strategies and software for machine learning accelerated discovery in transition metal chemistry
A Nandy, C Duan, JP Janet, S Gugler, HJ Kulik
Industrial & Engineering Chemistry Research 57 (42), 13973-13986, 2018
1152018
Accurate Multiobjective Design in a Space of Millions of Transition Metal Complexes with Neural-Network-Driven Efficient Global Optimization
JP Janet, S Ramesh, C Duan, HJ Kulik
ACS Central Science 6 (4), 513-524, 2020
1062020
Spatially extended Kondo state in magnetic molecules induced by interfacial charge transfer
UGE Perera, HJ Kulik, V Iancu, LD Da Silva, SE Ulloa, N Marzari, SW Hla
Physical review letters 105 (10), 106601, 2010
105*2010
Towards quantifying the role of exact exchange in predictions of transition metal complex properties
EI Ioannidis, HJ Kulik
The Journal of chemical physics 143 (3), 034104, 2015
1002015
Quantum chemistry for solvated molecules on graphical processing units using polarizable continuum models
F Liu, N Luehr, HJ Kulik, TJ Martínez
Journal of chemical theory and computation 11 (7), 3131-3144, 2015
982015
Systematic study of first-row transition-metal diatomic molecules: A self-consistent approach
HJ Kulik, N Marzari
The Journal of chemical physics 133 (11), 114103, 2010
982010
The system can't perform the operation now. Try again later.
Articles 1–20