Folgen
Erik Daxberger
Erik Daxberger
Bestätigte E-Mail-Adresse bei apple.com
Titel
Zitiert von
Zitiert von
Jahr
Laplace Redux--Effortless Bayesian Deep Learning
E Daxberger*, A Kristiadi*, A Immer*, R Eschenhagen*, M Bauer, ...
NeurIPS 2021, 2021
2622021
Sample-Efficient Optimization in the Latent Space of Deep Generative Models via Weighted Retraining
A Tripp*, E Daxberger*, JM Hernández-Lobato
NeurIPS 2020, 2020
1352020
Embedding Models for Episodic Knowledge Graphs
Y Ma, V Tresp, EA Daxberger
Journal of Web Semantics, 2018
1142018
Bayesian Deep Learning via Subnetwork Inference
E Daxberger, E Nalisnick, JU Allingham, J Antorán, ...
ICML 2021, 2021
104*2021
Bayesian Variational Autoencoders for Unsupervised Out-of-Distribution Detection
E Daxberger, JM Hernández-Lobato
Bayesian Deep Learning Workshop, NeurIPS 2019, 2019
622019
Distributed Batch Gaussian Process Optimization
EA Daxberger, BKH Low
ICML 2017, 2017
562017
Mixed-Variable Bayesian Optimization
E Daxberger*, A Makarova*, M Turchetta, A Krause
IJCAI 2020, 2020
492020
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
J Antorán, D Janz, JU Allingham, E Daxberger, R Barbano, E Nalisnick, ...
ICML 2022, 2022
29*2022
Mixtures of Laplace Approximations for Improved Post-Hoc Uncertainty in Deep Learning
R Eschenhagen, E Daxberger, P Hennig, A Kristiadi
Bayesian Deep Learning Workshop, NeurIPS 2021, 2021
212021
Mobile V-MoEs: Scaling Down Vision Transformers via Sparse Mixture-of-Experts
E Daxberger, F Weers, B Zhang, T Gunter, R Pang, M Eichner, ...
arXiv 2023, 2023
32023
Improving Continual Learning by Accurate Gradient Reconstructions of the Past
E Daxberger, S Swaroop, K Osawa, R Yokota, RE Turner, ...
TMLR 2023, 2023
12023
Advances in Probabilistic Deep Learning and Their Applications
EA Daxberger
University of Cambridge, 2023
2023
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–12