Suivre
Dieterich Lawson
Titre
Citée par
Citée par
Année
Rebar: Low-variance, unbiased gradient estimates for discrete latent variable models
G Tucker, A Mnih, CJ Maddison, J Lawson, J Sohl-Dickstein
Advances in Neural Information Processing Systems 30, 2017
3382017
Filtering variational objectives
CJ Maddison, D Lawson, G Tucker, N Heess, M Norouzi, A Mnih, ...
Advances in Neural Information Processing Systems, 6573-6583, 2017
2402017
Doubly Reparameterized Gradient Estimators for Monte Carlo Objectives
G Tucker, D Lawson, S Gu, CJ Maddison
International Conference on Learning Representations (ICLR) 2019, 2018
1232018
Changing model behavior at test-time using reinforcement learning
A Odena, D Lawson, C Olah
International Conference on Learning Representations (ICLR) Workshops 2017, 2017
542017
Learning Hard Alignments with Variational Inference
D Lawson, CC Chiu, G Tucker, C Raffel, K Swersky, N Jaitly
IEEE International Conference on Acoustics, Speech and Signal Processing …, 2018
402018
Energy-Inspired Models: Learning with Sampler-Induced Distributions
D Lawson, G Tucker, B Dai, R Ranganath
Advances in Neural Information Processing Systems 32 (2019), 2019
382019
Twisted variational sequential monte carlo
D Lawson, G Tucker, CA Naesseth, C Maddison, RP Adams, YW Teh
Third workshop on Bayesian Deep Learning (NeurIPS), 2018
232018
Particle Value Functions
CJ Maddison, D Lawson, G Tucker, N Heess, A Doucet, A Mnih, YW Teh
International Conference on Learning Representations (ICLR) Workshops 2017, 2017
202017
The neural testbed: Evaluating joint predictions
I Osband, Z Wen, SM Asghari, V Dwaracherla, X Lu, M Ibrahimi, ...
Advances in Neural Information Processing Systems 35, 12554-12565, 2022
182022
Evaluating predictive distributions: Does Bayesian deep learning work?
I Osband, Z Wen, SM Asghari, X Lu, M Ibrahimi, V Dwaracherla, ...
92021
An online sequence-to-sequence model for noisy speech recognition
CC Chiu, D Lawson, Y Luo, G Tucker, K Swersky, I Sutskever, N Jaitly
arXiv preprint arXiv:1706.06428, 2017
82017
SIXO: Smoothing Inference with Twisted Objectives
D Lawson, A Raventós, A Warrington, S Linderman
Advances in Neural Information Processing Systems (NeurIPS) 36, 2022
72022
Training a subsampling mechanism in expectation
C Raffel, D Lawson
arXiv preprint arXiv:1702.06914, 2017
52017
Alternating direction method of multipliers implementation using Apache Spark
D Lawson
Stanford University: Stanford, CA, USA, 2014
52014
Recurrent neural networks for online sequence generation
CC Chiu, N Jaitly, JD Lawson, GJ Tucker
US Patent 11,625,572, 2023
32023
Image captioning with attention
B Rister, D Lawson
IEEE Computation Conference, 2016
22016
NAS-X: neural adaptive smoothing via twisting
D Lawson, M Li, S Linderman
Advances in Neural Information Processing Systems 36, 2024
12024
Neural Adaptive Smoothing via Twisting
MY Li, D Lawson, S Linderman
Fifth Symposium on Advances in Approximate Bayesian Inference, 0
1
Adjusting neural network resource usage
AQ Odena, JD Lawson
US Patent App. 18/487,802, 2024
2024
Adjusting neural network resource usage
AQ Odena, JD Lawson
US Patent 11,790,211, 2023
2023
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20