Deep learning with limited numerical precision S Gupta, A Agrawal, K Gopalakrishnan, P Narayanan International conference on machine learning, 1737-1746, 2015 | 2604 | 2015 |
Neuromorphic computing using non-volatile memory GW Burr, RM Shelby, A Sebastian, S Kim, S Kim, S Sidler, K Virwani, ... Advances in Physics: X 2 (1), 89-124, 2017 | 1241 | 2017 |
Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element GW Burr, RM Shelby, S Sidler, C Di Nolfo, J Jang, I Boybat, RS Shenoy, ... IEEE Transactions on Electron Devices 62 (11), 3498-3507, 2015 | 1104 | 2015 |
Equivalent-accuracy accelerated neural-network training using analogue memory S Ambrogio, P Narayanan, H Tsai, RM Shelby, I Boybat, C Di Nolfo, ... Nature 558 (7708), 60-67, 2018 | 1085 | 2018 |
Access devices for 3D crosspoint memory GW Burr, RS Shenoy, K Virwani, P Narayanan, A Padilla, B Kurdi, ... Journal of Vacuum Science & Technology B 32 (4), 040802, 2014 | 419 | 2014 |
Recent progress in analog memory-based accelerators for deep learning H Tsai, S Ambrogio, P Narayanan, RM Shelby, GW Burr Journal of Physics D: Applied Physics 51 (28), 283001, 2018 | 220 | 2018 |
Large-scale neural networks implemented with non-volatile memory as the synaptic weight element: Comparative performance analysis (accuracy, speed, and power) GW Burr, P Narayanan, RM Shelby, S Sidler, I Boybat, C Di Nolfo, ... 2015 IEEE International Electron Devices Meeting (IEDM), 4.4. 1-4.4. 4, 2015 | 197 | 2015 |
Fault-tolerant nanoscale processors on semiconductor nanowire grids CA Moritz, T Wang, P Narayanan, M Leuchtenburg, Y Guo, C Dezan, ... IEEE Transactions on Circuits and Systems I: Regular Papers 54 (11), 2422-2437, 2007 | 83 | 2007 |
MIEC (mixed-ionic-electronic-conduction)-based access devices for non-volatile crossbar memory arrays RS Shenoy, GW Burr, K Virwani, B Jackson, A Padilla, P Narayanan, ... Semiconductor Science and Technology 29 (10), 104005, 2014 | 75 | 2014 |
Fully on-chip MAC at 14 nm enabled by accurate row-wise programming of PCM-based weights and parallel vector-transport in duration-format P Narayanan, S Ambrogio, A Okazaki, K Hosokawa, H Tsai, A Nomura, ... IEEE Transactions on Electron Devices 68 (12), 6629-6636, 2021 | 71 | 2021 |
Bidirectional Non-Filamentary RRAM as an Analog Neuromorphic Synapse, Part I: Al/Mo/Pr0.7Ca0.3MnO3 Material Improvements and Device Measurements K Moon, A Fumarola, S Sidler, J Jang, P Narayanan, RM Shelby, GW Burr, ... IEEE Journal of the Electron Devices Society 6, 146-155, 2017 | 71 | 2017 |
Toward on-chip acceleration of the backpropagation algorithm using nonvolatile memory P Narayanan, A Fumarola, LL Sanches, K Hosokawa, SC Lewis, ... IBM Journal of Research and Development 61 (4/5), 11: 1-11: 11, 2017 | 71 | 2017 |
Reducing the impact of phase-change memory conductance drift on the inference of large-scale hardware neural networks S Ambrogio, M Gallot, K Spoon, H Tsai, C Mackin, M Wesson, ... 2019 IEEE International Electron Devices Meeting (IEDM), 6.1. 1-6.1. 4, 2019 | 63 | 2019 |
An analog-AI chip for energy-efficient speech recognition and transcription S Ambrogio, P Narayanan, A Okazaki, A Fasoli, C Mackin, K Hosokawa, ... Nature 620 (7975), 768-775, 2023 | 62 | 2023 |
AI hardware acceleration with analog memory: Microarchitectures for low energy at high speed HY Chang, P Narayanan, SC Lewis, NCP Farinha, K Hosokawa, ... IBM Journal of Research and Development 63 (6), 8: 1-8: 14, 2019 | 57 | 2019 |
CMOS control enabled single-type FET NASIC P Narayanan, M Leuchtenburg, T Wang, CA Moritz 2008 IEEE Computer Society Annual Symposium on VLSI, 191-196, 2008 | 52 | 2008 |
Hardware-aware training for large-scale and diverse deep learning inference workloads using in-memory computing-based accelerators MJ Rasch, C Mackin, M Le Gallo, A Chen, A Fasoli, F Odermatt, N Li, ... Nature communications 14 (1), 5282, 2023 | 51 | 2023 |
Large-scale neural networks implemented with non-volatile memory as the synaptic weight element: Impact of conductance response S Sidler, I Boybat, RM Shelby, P Narayanan, J Jang, A Fumarola, K Moon, ... 2016 46th European Solid-State Device Research Conference (ESSDERC), 440-443, 2016 | 47 | 2016 |
Inference of long-short term memory networks at software-equivalent accuracy using 2.5 M analog phase change memory devices H Tsai, S Ambrogio, C Mackin, P Narayanan, RM Shelby, K Rocki, ... 2019 Symposium on VLSI Technology, T82-T83, 2019 | 41 | 2019 |
Perspective on training fully connected networks with resistive memories: Device requirements for multiple conductances of varying significance G Cristiano, M Giordano, S Ambrogio, LP Romero, C Cheng, ... Journal of Applied Physics 124 (15), 2018 | 40 | 2018 |