Michalis Titsias
Michalis Titsias
DeepMind
Adresse e-mail validée de google.com - Page d'accueil
Titre
Citée par
Citée par
Année
Variational learning of inducing variables in sparse Gaussian processes
M Titsias
Artificial intelligence and statistics, 567-574, 2009
10022009
Bayesian Gaussian process latent variable model
M Titsias, ND Lawrence
Proceedings of the Thirteenth International Conference on Artificial …, 2010
4312010
Doubly stochastic variational Bayes for non-conjugate inference
M Titsias, M Lázaro-Gredilla
International conference on machine learning, 1971-1979, 2014
3052014
Variational heteroscedastic Gaussian process regression
M Lázaro-Gredilla, MK Titsias
ICML, 2011
2202011
SAMHD1 is mutated recurrently in chronic lymphocytic leukemia and is involved in response to DNA damage
R Clifford, T Louis, P Robbe, S Ackroyd, A Burns, AT Timbs, ...
Blood, The Journal of the American Society of Hematology 123 (7), 1021-1031, 2014
1932014
Bayesian feature and model selection for Gaussian mixture models
C Constantinopoulos, MK Titsias, A Likas
IEEE Transactions on Pattern Analysis and Machine Intelligence 28 (6), 1013-1018, 2006
1892006
Spike and slab variational inference for multi-task and multiple kernel learning
M Titsias, M Lázaro-Gredilla
Advances in neural information processing systems 24, 2339-2347, 2011
1762011
The generalized reparameterization gradient
FJR Ruiz, MK Titsias, DM Blei
arXiv preprint arXiv:1610.02287, 2016
1322016
Manifold relevance determination
A Damianou, C Ek, M Titsias, N Lawrence
arXiv preprint arXiv:1206.4610, 2012
1292012
Variational inference for latent variables and uncertain inputs in Gaussian processes
AC Damianou, MK Titsias, N Lawrence
1152016
Efficient multioutput Gaussian processes through variational inducing kernels
M Álvarez, D Luengo, M Titsias, ND Lawrence
Proceedings of the Thirteenth International Conference on Artificial …, 2010
1152010
Efficient multioutput Gaussian processes through variational inducing kernels
M Álvarez, D Luengo, M Titsias, ND Lawrence
Proceedings of the Thirteenth International Conference on Artificial …, 2010
1152010
The Infinite Gamma-Poisson Feature Model.
MK Titsias
NIPS 20, 1513-1520, 2007
1122007
Variational Gaussian process dynamical systems
AC Damianou, MK Titsias, ND Lawrence
arXiv preprint arXiv:1107.4985, 2011
1062011
Shared kernel models for class conditional density estimation
MK Titsias, AC Likas
IEEE Transactions on Neural Networks 12 (5), 987-997, 2001
922001
Greedy learning of multiple objects in images using robust statistics and factorial learning
CKI Williams, MK Titsias
Neural Computation 16 (5), 1039-1062, 2004
912004
Retrieval of biophysical parameters with heteroscedastic Gaussian processes
M Lázaro-Gredilla, MK Titsias, J Verrelst, G Camps-Valls
IEEE Geoscience and Remote Sensing Letters 11 (4), 838-842, 2013
852013
Local expectation gradients for black box variational inference
M Titsias, M Lázaro-Gredilla
Advances in neural information processing systems, 2620-2628, 2015
652015
Mixture of experts classification using a hierarchical mixture model
MK Titsias, A Likas
Neural Computation 14 (9), 2221-2244, 2002
632002
First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling
M Karaliopoulos, I Koutsopoulos, M Titsias
Proceedings of the 17th ACM international symposium on mobile ad hoc …, 2016
602016
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20