Understanding and implementing the finite element method MS Gockenbach Society for Industrial and Applied Mathematics, 2006 | 408 | 2006 |

Partial differential equations: analytical and numerical methods MS Gockenbach Society for Industrial and Applied Mathematics, 2010 | 182 | 2010 |

An abstract framework for elliptic inverse problems: Part 1. an output least-squares approach MS Gockenbach, AA Khan Mathematics and mechanics of solids 12 (3), 259-276, 2007 | 101 | 2007 |

Finite-dimensional linear algebra MS Gockenbach CRC Press 9 (426), 240, 2010 | 88 | 2010 |

An abstract framework for elliptic inverse problems: Part 2. An augmented Lagrangian approach MS Gockenbach, AA Khan Mathematics and Mechanics of Solids 14 (6), 517-539, 2009 | 58 | 2009 |

Equation error approach for elliptic inverse problems with an application to the identification of Lamé parameters MS Gockenbach, B Jadamba, AA Khan Inverse Problems in Science and Engineering 16 (3), 349-367, 2008 | 53 | 2008 |

Linear inverse problems and Tikhonov regularization MS Gockenbach American Mathematical Soc., 2016 | 52 | 2016 |

Identification of Lamé parameters in linear elasticity: a fixed point approach MS Gockenbach, AA Khan Journal of industrial and Management optimization 1 (4), 487-497, 2005 | 52 | 2005 |

An equation error approach for the elasticity imaging inverse problem for predicting tumor location E Crossen, MS Gockenbach, B Jadamba, AA Khan, B Winkler Computers & Mathematics with Applications 67 (1), 122-135, 2014 | 40 | 2014 |

Numerical estimation of discontinuous coefficients by the method of equation error MS Gockenbach, B Jadamba, AA Khan Int. J. Math. Comput. Sci 1 (3), 343-359, 2006 | 39 | 2006 |

C++ classes for linking optimization with complex simulations MS Gockenbach, MJ Petro, WW Symes ACM Transactions on Mathematical Software (TOMS) 25 (2), 191-212, 1999 | 37 | 1999 |

Newton’s law of heating and the heat equation M Gockenbach, K Schmidtke Involve, a Journal of Mathematics 2 (4), 419-437, 2009 | 36 | 2009 |

The dual regularization approach to seismic velocity inversion MS Gockenbach, WW Symes, RA Tapia Inverse Problems 11 (3), 501, 1995 | 26 | 1995 |

Recovering planar Lame moduli from a single-traction experiment SJ Cox, M Gockenbach Mathematics and Mechanics of Solids 2 (3), 297-306, 1997 | 24 | 1997 |

Stability and error estimates for an equation error method for elliptic equations MF Al-Jamal, MS Gockenbach Inverse problems 28 (9), 095006, 2012 | 22 | 2012 |

Optimal signal sets for non-Gaussian detectors MS Gockenbach, AJ Kearsley SIAM Journal on Optimization 9 (2), 316-326, 1999 | 22 | 1999 |

Proximal methods for the elastography inverse problem of tumor identification using an equation error approach MS Gockenbach, B Jadamba, AA Khan, C Tammer, B Winkler Advances in Variational and Hemivariational Inequalities: Theory, Numerical …, 2015 | 21 | 2015 |

Efficient and automatic implementation of the adjoint state method MS Gockenbach, DR Reynolds, P Shen, WW Symes ACM Transactions on Mathematical Software (TOMS) 28 (1), 22-44, 2002 | 20 | 2002 |

Hilbert class library: A library of abstract C++ classes for optimization and inversion MS Gockenbach, WW Symes Computers & Mathematics with Applications 32 (6), 1-13, 1996 | 20 | 1996 |

A variational method for recovering planar Lamé moduli J Chen, MS Gockenbach Mathematics and Mechanics of Solids 7 (2), 191-202, 2002 | 17 | 2002 |