Jonathan Uesato
Jonathan Uesato
Adresse e-mail validée de
Citée par
Citée par
Adversarial risk and the dangers of evaluating against weak attacks
J Uesato, B O'Donoghue, A Oord, P Kohli
ICML 2018, 2018
Robustfill: Neural program learning under noisy I/O
J Devlin, J Uesato, S Bhupatiraju, R Singh, A Mohamed, P Kohli
Proceedings of the 34th International Conference on Machine Learning-Volume …, 2017
On the effectiveness of interval bound propagation for training verifiably robust models
S Gowal, K Dvijotham, R Stanforth, R Bunel, C Qin, J Uesato, ...
arXiv preprint arXiv:1810.12715, 2018
Technical report on the cleverhans v2. 1.0 adversarial examples library
N Papernot, F Faghri, N Carlini, I Goodfellow, R Feinman, A Kurakin, ...
arXiv preprint arXiv:1610.00768, 2016
Are Labels Required for Improving Adversarial Robustness?
J Uesato, JB Alayrac, PS Huang, R Stanforth, A Fawzi, P Kohli
NeurIPS 2019, 2019
Robustness via curvature regularization, and vice versa
SM Moosavi-Dezfooli, A Fawzi, J Uesato, P Frossard
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2019
Training verified learners with learned verifiers
K Dvijotham, S Gowal, R Stanforth, R Arandjelovic, B O'Donoghue, ...
arXiv preprint arXiv:1805.10265, 2018
Rigorous agent evaluation: An adversarial approach to uncover catastrophic failures
J Uesato, A Kumar, C Szepesvari, T Erez, A Ruderman, K Anderson, ...
ICLR 2019, 2018
Scalable Verified Training for Provably Robust Image Classification
S Gowal, KD Dvijotham, R Stanforth, R Bunel, C Qin, J Uesato, ...
Proceedings of the IEEE International Conference on Computer Vision, 4842-4851, 2019
An Alternative Surrogate Loss for PGD-based Adversarial Testing
S Gowal, J Uesato, C Qin, PS Huang, T Mann, P Kohli
arXiv preprint arXiv:1910.09338, 2019
Verification of non-linear specifications for neural networks
C Qin, B O'Donoghue, R Bunel, R Stanforth, S Gowal, J Uesato, ...
ICLR 2019, 2019
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
S Gowal, C Qin, J Uesato, T Mann, P Kohli
arXiv preprint arXiv:2010.03593, 2020
Semantic code repair using neuro-symbolic transformation networks
J Devlin, J Uesato, R Singh, P Kohli
arXiv preprint arXiv:1710.11054, 2017
Enabling certification of verification-agnostic networks via memory-efficient semidefinite programming
S Dathathri, K Dvijotham, A Kurakin, A Raghunathan, J Uesato, RR Bunel, ...
Advances in Neural Information Processing Systems 33, 2020
Uncovering Surprising Behaviors in Reinforcement Learning via Worst-case Analysis
A Ruderman, R Everett, B Sikder, H Soyer, J Uesato, A Kumar, C Beattie, ...
Verifying Probabilistic Specifications with Functional Lagrangians
L Berrada, S Dathathri, R Stanforth, R Bunel, J Uesato, S Gowal, ...
arXiv preprint arXiv:2102.09479, 2021
REALab: An Embedded Perspective on Tampering
R Kumar, J Uesato, R Ngo, T Everitt, V Krakovna, S Legg
arXiv preprint arXiv:2011.08820, 2020
Avoiding Tampering Incentives in Deep RL via Decoupled Approval
J Uesato, R Kumar, V Krakovna, T Everitt, R Ngo, S Legg
arXiv preprint arXiv:2011.08827, 2020
Systems and methods for entering traffic flow in autonomous vehicles
J Allan, E Lujan, P Gao, S Bhattacharya, W Mou, J Uesato
US Patent 10,488,861, 2019
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–19