Jasper Snoek
Jasper Snoek
Google Brain
Adresse e-mail validée de google.com
Titre
Citée par
Citée par
Année
Practical bayesian optimization of machine learning algorithms
J Snoek, H Larochelle, RP Adams
Advances in neural information processing systems 25, 2012
52532012
Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks
DR Kelley, J Snoek, JL Rinn
Genome research 26 (7), 990-999, 2016
6292016
Scalable bayesian optimization using deep neural networks
J Snoek, O Rippel, K Swersky, R Kiros, N Satish, N Sundaram, M Patwary, ...
International conference on machine learning, 2171-2180, 2015
5972015
Multi-task bayesian optimization
K Swersky, J Snoek, RP Adams
Curran Associates, Inc., 2013
5352013
Can you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift
Y Ovadia, E Fertig, J Ren, Z Nado, D Sculley, S Nowozin, JV Dillon, ...
arXiv preprint arXiv:1906.02530, 2019
4272019
Bayesian optimization with unknown constraints
MA Gelbart, J Snoek, RP Adams
arXiv preprint arXiv:1403.5607, 2014
3032014
Towards an empirical foundation for assessing bayesian optimization of hyperparameters
K Eggensperger, M Feurer, F Hutter, J Bergstra, J Snoek, H Hoos, ...
NIPS workshop on Bayesian Optimization in Theory and Practice 10 (3), 2013
2892013
Spectral representations for convolutional neural networks
O Rippel, J Snoek, RP Adams
arXiv preprint arXiv:1506.03767, 2015
2382015
Likelihood ratios for out-of-distribution detection
J Ren, PJ Liu, E Fertig, J Snoek, R Poplin, MA DePristo, JV Dillon, ...
arXiv preprint arXiv:1906.02845, 2019
1962019
Freeze-thaw Bayesian optimization
K Swersky, J Snoek, RP Adams
arXiv preprint arXiv:1406.3896, 2014
1932014
Input warping for bayesian optimization of non-stationary functions
J Snoek, K Swersky, R Zemel, R Adams
International Conference on Machine Learning, 1674-1682, 2014
1842014
Deep bayesian bandits showdown: An empirical comparison of bayesian deep networks for thompson sampling
C Riquelme, G Tucker, J Snoek
arXiv preprint arXiv:1802.09127, 2018
1572018
Sequential regulatory activity prediction across chromosomes with convolutional neural networks
DR Kelley, YA Reshef, M Bileschi, D Belanger, CY McLean, J Snoek
Genome research 28 (5), 739-750, 2018
1552018
Prabhat, and RP Adams. Scalable Bayesian optimization using deep neural networks
J Snoek, O Rippel, K Swersky, R Kiros, N Satish, N Sundaram, ...
Proc. of ICML 15, 2171-2180, 2015
1132015
Winner's curse? On pace, progress, and empirical rigor
D Sculley, J Snoek, A Wiltschko, A Rahimi
1102018
Advances in neural information processing systems
J Snoek, H Larochelle, RP Adams
Curran Associates Inc., New York 2951, 2012
1042012
Learning latent permutations with gumbel-sinkhorn networks
G Mena, D Belanger, S Linderman, J Snoek
arXiv preprint arXiv:1802.08665, 2018
1032018
How good is the bayes posterior in deep neural networks really?
F Wenzel, K Roth, BS Veeling, J Świątkowski, L Tran, S Mandt, J Snoek, ...
arXiv preprint arXiv:2002.02405, 2020
812020
Automated detection of unusual events on stairs
J Snoek, J Hoey, L Stewart, RS Zemel, A Mihailidis
Image and Vision Computing 27 (1-2), 153-166, 2009
812009
Machine learning approaches in cardiovascular imaging
M Henglin, G Stein, PV Hushcha, J Snoek, AB Wiltschko, S Cheng
Circulation: Cardiovascular Imaging 10 (10), e005614, 2017
722017
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20