Evolutionary-scale prediction of atomic-level protein structure with a language model Z Lin, H Akin, R Rao, B Hie, Z Zhu, W Lu, N Smetanin, R Verkuil, O Kabeli, ... Science 379 (6637), 1123-1130, 2023 | 1914* | 2023 |
Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences A Rives, J Meier, T Sercu, S Goyal, Z Lin, D Guo, M Ott, CL Zitnick, J Ma, ... bioRxiv, 622803, 2019 | 1865 | 2019 |
MSA transformer RM Rao, J Liu, R Verkuil, J Meier, J Canny, P Abbeel, T Sercu, A Rives International Conference on Machine Learning, 8844-8856, 2021 | 549 | 2021 |
English conversational telephone speech recognition by humans and machines G Saon, G Kurata, T Sercu, K Audhkhasi, S Thomas, D Dimitriadis, X Cui, ... arXiv preprint arXiv:1703.02136, 2017 | 477 | 2017 |
Language models enable zero-shot prediction of the effects of mutations on protein function J Meier, R Rao, R Verkuil, J Liu, T Sercu, A Rives Advances in neural information processing systems 34, 29287-29303, 2021 | 465 | 2021 |
Learning inverse folding from millions of predicted structures C Hsu, R Verkuil, J Liu, Z Lin, B Hie, T Sercu, A Lerer, A Rives International conference on machine learning, 8946-8970, 2022 | 303 | 2022 |
Transformer protein language models are unsupervised structure learners R Rao, J Meier, T Sercu, S Ovchinnikov, A Rives Biorxiv, 2020.12. 15.422761, 2020 | 280 | 2020 |
The IBM 2016 English Conversational Telephone Speech Recognition System G Saon, T Sercu, S Rennie, HKJ Kuo https://arxiv.org/abs/1604.08242, 2016 | 276 | 2016 |
Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations P Das, T Sercu, K Wadhawan, I Padhi, S Gehrmann, F Cipcigan, ... Nature Biomedical Engineering 5 (6), 613-623, 2021 | 275 | 2021 |
Very deep multilingual convolutional neural networks for LVCSR T Sercu, C Puhrsch, B Kingsbury, Y LeCun ICASSP 2016, 4955-4959, 2016 | 273 | 2016 |
Fisher gan Y Mroueh, T Sercu Advances in neural information processing systems 30, 2017 | 189 | 2017 |
Mcgan: Mean and covariance feature matching gan Y Mroueh, T Sercu, V Goel International conference on machine learning, 2527-2535, 2017 | 171 | 2017 |
Sobolev gan Y Mroueh, CL Li, T Sercu, A Raj, Y Cheng arXiv preprint arXiv:1711.04894, 2017 | 145 | 2017 |
Big-little net: An efficient multi-scale feature representation for visual and speech recognition CF Chen, Q Fan, N Mallinar, T Sercu, R Feris arXiv preprint arXiv:1807.03848, 2018 | 109 | 2018 |
Knowledge distillation across ensembles of multilingual models for low-resource languages J Cui, B Kingsbury, B Ramabhadran, G Saon, T Sercu, K Audhkhasi, ... 2017 IEEE International Conference on Acoustics, Speech and Signal …, 2017 | 74 | 2017 |
Dense prediction on sequences with time-dilated convolutions for speech recognition T Sercu, V Goel arXiv preprint arXiv:1611.09288, 2016 | 71 | 2016 |
Language models generalize beyond natural proteins R Verkuil, O Kabeli, Y Du, BIM Wicky, LF Milles, J Dauparas, D Baker, ... BioRxiv, 2022.12. 21.521521, 2022 | 69 | 2022 |
Pepcvae: Semi-supervised targeted design of antimicrobial peptide sequences P Das, K Wadhawan, O Chang, T Sercu, CD Santos, M Riemer, ... arXiv preprint arXiv:1810.07743, 2018 | 64 | 2018 |
Advances in Very Deep Convolutional Neural Networks for LVCSR T Sercu, V Goel Interspeech 2016, 2016 | 58 | 2016 |
Adversarial semantic alignment for improved image captions P Dognin, I Melnyk, Y Mroueh, J Ross, T Sercu Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2019 | 48* | 2019 |