Asja Fischer
Asja Fischer
Professor for Machine Learning, Ruhr University Bochum
Adresse e-mail validée de
Citée par
Citée par
An introduction to restricted Boltzmann machines
A Fischer, C Igel
Iberoamerican congress on pattern recognition, 14-36, 2012
A closer look at memorization in deep networks
D Arpit, S Jastrzębski, N Ballas, D Krueger, E Bengio, MS Kanwal, ...
International Conference of Machine Learning (ICML), 233--242, 2017
Training restricted Boltzmann machines: An introduction
A Fischer, C Igel
Pattern Recognition 47 (1), 25-39, 2014
Three factors influencing minima in sgd
S Jastrzębski, Z Kenton, D Arpit, N Ballas, A Fischer, Y Bengio, A Storkey
International Conference of Artificial Neural Networks (ICANN 2018)/ arXiv …, 2017
Difference target propagation
DH Lee, S Zhang, A Fischer, Y Bengio
Joint european conference on machine learning and knowledge discovery in …, 2015
Neural network-based question answering over knowledge graphs on word and character level
D Lukovnikov, A Fischer, J Lehmann, S Auer
Proceedings of the 26th international conference on World Wide Web, 1211-1220, 2017
On the regularization of Wasserstein GANs
H Petzka, A Fischer, D Lukovnikov
International Conference on Learning Representations (ICLR), 2018
Empirical analysis of the divergence of Gibbs sampling based learning algorithms for restricted Boltzmann machines
A Fischer, C Igel
International conference on artificial neural networks, 208-217, 2010
STDP-Compatible Approximation of Back-Propagation in an Energy-Based Model
Y Bengio, T Mesnard, A Fischer, S Zhang, Y Wu
Neural Computation, 2017
Bounding the bias of contrastive divergence learning
A Fischer, C Igel
Neural computation 23 (3), 664-673, 2011
STDP as presynaptic activity times rate of change of postsynaptic activity
Y Bengio, T Mesnard, A Fischer, S Zhang, Y Wu
arXiv preprint arXiv:1509.05936, 2015
Deep Nets Don't Learn via Memorization
D Krueger, N Ballas, S Jastrzebski, D Arpit, MS Kanwal, T Maharaj, ...
International Conference of Learning Representations (ICLR) - workshop track, 2017
On the Relation Between the Sharpest Directions of DNN Loss and the SGD Step Length
S Jastrzębski, Z Kenton, N Ballas, A Fischer, Y Bengio, A Storkey
International Conference on Learning Representations (ICLR) 2019, 2019
How to center deep Boltzmann machines
J Melchior, A Fischer, L Wiskott
Journal of Machine Learning Research 17 (99), 1-61, 2016
Bidirectional Helmholtz machines
J Bornschein, S Shabanian, A Fischer, Y Bengio
International Conference on Machine Learning, 2511-2519, 2016
Early Inference in Energy-Based Models Approximates Back-Propagation
Y Bengio, A Fischer
arXiv preprint arXiv:1510.02777, 2015
Incorporating literals into knowledge graph embeddings
A Kristiadi, MA Khan, D Lukovnikov, J Lehmann, A Fischer
International Semantic Web Conference. Springer, 2019
The flip-the-state transition operator for restricted Boltzmann machines
K Brügge, A Fischer, C Igel
Machine Learning 93 (1), 53-69, 2013
Training restricted boltzmann machines
A Fischer
KI-Künstliche Intelligenz 29 (4), 441-444, 2015
Improving Response Selection in Multi-turn Dialogue Systems by Incorporating Domain Knowledge
D Chaudhuri, A Kristiadi, J Lehmann, A Fischer
SIGNLL Conference on Computational Natural Language Learning (CoNLL), 2018
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20