Mohammad Pezeshki
Mohammad Pezeshki
Adresse e-mail validée de umontreal.ca
Titre
Citée par
Citée par
Année
Theano: A Python framework for fast computation of mathematical expressions
R Al-Rfou, G Alain, A Almahairi, C Angermueller, D Bahdanau, N Ballas, ...
arXiv, arXiv: 1605.02688, 2016
5952016
Towards end-to-end speech recognition with deep convolutional neural networks
Y Zhang, M Pezeshki, P Brakel, S Zhang, CLY Bengio, A Courville
arXiv preprint arXiv:1701.02720, 2017
2482017
Zoneout: Regularizing rnns by randomly preserving hidden activations
D Krueger, T Maharaj, J Kramár, M Pezeshki, N Ballas, NR Ke, A Goyal, ...
arXiv preprint arXiv:1606.01305, 2016
2152016
Theano: A Python framework for fast computation of mathematical expressions
TTD Team, R Al-Rfou, G Alain, A Almahairi, C Angermueller, D Bahdanau, ...
arXiv preprint arXiv:1605.02688, 2016
1182016
Deconstructing the Ladder Network Architecture
M Pezeshki, L Fan, P Brakel, A Courville, Y Bengio
arXiv preprint arXiv:1511.06430, 2015
822015
Negative momentum for improved game dynamics
G Gidel, RA Hemmat, M Pezeshki, R Le Priol, G Huang, S Lacoste-Julien, ...
The 22nd International Conference on Artificial Intelligence and Statistics …, 2019
562019
Harm de Vries, David Warde-Farley, Dustin J
R Al-Rfou, G Alain, A Almahairi, C Angermueller, D Bahdanau, N Ballas, ...
Webb, Matthew Willson, Kelvin Xu, Lijun Xue, Li Yao, Saizheng Zhang, and …, 2016
252016
Theano: A Python framework for fast computation of mathematical expressions. arXiv e-prints, abs/1605.02688
R Al-Rfou, G Alain, A Almahairi, C Angermueller, D Bahdanau, N Ballas, ...
URL http://arxiv. org/abs/1605.02688, 2016
202016
Comparison three methods of clustering: K-means, spectral clustering and hierarchical clustering
K Kowsari, T Borsche, A Ulbig, G Andersson, AM Saxe, JL McClelland, ...
arXiv Preprint, 2013
12*2013
On the learning dynamics of deep neural networks
RT des Combes, M Pezeshki, S Shabanian, A Courville, Y Bengio
arXiv preprint arXiv:1809.06848, 2018
92018
Theano: A Python framework for fast computation of mathematical expressions. arXiv e-prints abs/1605.02688 (May 2016)
R Al-Rfou, G Alain, A Almahairi, C Angermueller, D Bahdanau, N Ballas, ...
URL http://arxiv. org/abs/1605.02688, 2016
92016
Deep belief networks for image denoising
MA Keyvanrad, M Pezeshki, MA Homayounpour
arXiv preprint arXiv:1312.6158, 2013
82013
Sequence modeling using gated recurrent neural networks
M Pezeshki
arXiv preprint arXiv:1501.00299, 2015
42015
Convergence properties of deep neural networks on separable data
RT des Combes, M Pezeshki, S Shabanian, A Courville, Y Bengio
12018
On the learning dynamics of deep neural networks
RT Combes, M Pezeshki, S Shabanian, A Courville, Y Bengio
arXiv preprint arXiv:1809.06848, 2018
12018
On the Learning Dynamics of Deep Neural Networks
R Tachet des Combes, M Pezeshki, S Shabanian, A Courville, Y Bengio
arXiv, arXiv: 1809.06848, 2018
2018
Towards deep semi supervised learning
M Pezeshki
2017
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–17