Repulsive Deep Ensembles are Bayesian F D'Angelo, V Fortuin Advances in Neural Information Processing Systems 34, 2021 | 98 | 2021 |
Posterior meta-replay for continual learning C Henning, M Cervera, F D'Angelo, J Von Oswald, R Traber, B Ehret, ... Advances in Neural Information Processing Systems 34, 2021 | 55 | 2021 |
Learning the Ising model with generative neural networks F D'Angelo, L Böttcher Physical Review Research 2 (2), 023266, 2020 | 44 | 2020 |
On Stein Variational Neural Network Ensembles F D'Angelo, V Fortuin, F Wenzel Workshop on Uncertainty & Robustness in Deep Learning (ICML), 2021 | 29 | 2021 |
Annealed Stein Variational Gradient Descent F D’Angelo, V Fortuin 3rd Symposium on Advances in Approximate Bayesian Inference, 2020, 2020 | 24 | 2020 |
Why Do We Need Weight Decay in Modern Deep Learning? M Andriushchenko, F D'Angelo, A Varre, N Flammarion arXiv preprint arXiv:2310.04415, 2023 | 14 | 2023 |
On out-of-distribution detection with Bayesian neural networks F D'Angelo, C Henning arXiv. org, 2021 | 13* | 2021 |
Are Bayesian neural networks intrinsically good at out-of-distribution detection? C Henning, F D'Angelo, BF Grewe ICML 2021 Workshop on Uncertainty and Robustness in Deep Learning., 2021 | 12 | 2021 |
Uncertainty estimation under model misspecification in neural network regression MR Cervera, R Dätwyler, F D'Angelo, H Keurti, BF Grewe, C Henning NeurIPS 2021 Workshop Your Model Is Wrong: Robustness and Misspecification …, 2021 | 6 | 2021 |