Suivre
Jeroen Bertels
Jeroen Bertels
PhD student
Adresse e-mail validée de kuleuven.be
Titre
Citée par
Citée par
Année
Optimizing the dice score and jaccard index for medical image segmentation: Theory and practice
J Bertels, T Eelbode, M Berman, D Vandermeulen, F Maes, R Bisschops, ...
International Conference on Medical Image Computing and Computer-Assisted …, 2019
1162019
Optimization for medical image segmentation: Theory and practice when evaluating with dice score or jaccard index
T Eelbode, J Bertels, M Berman, D Vandermeulen, F Maes, R Bisschops, ...
IEEE Transactions on Medical Imaging 39 (11), 3679-3690, 2020
722020
Whole liver segmentation based on deep learning and manual adjustment for clinical use in SIRT
X Tang, E Jafargholi Rangraz, W Coudyzer, J Bertels, D Robben, ...
European journal of nuclear medicine and molecular imaging 47 (12), 2742-2752, 2020
212020
Towards fully automated third molar development staging in panoramic radiographs
N Banar, J Bertels, F Laurent, RM Boedi, J De Tobel, P Thevissen, ...
International Journal of Legal Medicine 134 (5), 1831-1841, 2020
212020
Effect of lower third molar segmentations on automated tooth development staging using a convolutional neural network
R Merdietio Boedi, N Banar, J De Tobel, J Bertels, D Vandermeulen, ...
Journal of Forensic Sciences 65 (2), 481-486, 2020
192020
Optimization with soft dice can lead to a volumetric bias
J Bertels, D Robben, D Vandermeulen, P Suetens
International MICCAI Brainlesion Workshop, 89-97, 2019
162019
Comparative study of deep learning methods for the automatic segmentation of lung, lesion and lesion type in CT scans of COVID-19 patients
S Tilborghs, I Dirks, L Fidon, S Willems, T Eelbode, J Bertels, B Ilsen, ...
arXiv preprint arXiv:2007.15546, 2020
152020
Theoretical analysis and experimental validation of volume bias of soft dice optimized segmentation maps in the context of inherent uncertainty
J Bertels, D Robben, D Vandermeulen, P Suetens
Medical Image Analysis 67, 101833, 2021
82021
Contra-lateral information CNN for core lesion segmentation based on native CTP in acute stroke
J Bertels, D Robben, D Vandermeulen, P Suetens
International MICCAI Brainlesion Workshop, 263-270, 2018
82018
Explainable-by-design semi-supervised representation learning for covid-19 diagnosis from ct imaging
AD Berenguer, H Sahli, B Joukovsky, M Kvasnytsia, I Dirks, ...
arXiv preprint arXiv:2011.11719, 2020
72020
DeepVoxNet: voxel‐wise prediction for 3D images
D Robben, J Bertels, S Willems, D Vandermeulen, F Maes, P Suetens
62018
Post training uncertainty calibration of deep networks for medical image segmentation
AJ Rousseau, T Becker, J Bertels, MB Blaschko, D Valkenborg
2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), 1052-1056, 2021
52021
Improving T1w MRI-based brain tumor segmentation using cross-modal distillation
M Rahimpour, J Bertels, D Vandermeulen, F Maes, K Goffin, M Koole
Medical Imaging 2021: Image Processing 11596, 115960Z, 2021
12021
Automated breast cancer risk estimation on routine CT thorax scans by deep learning segmentation
S De Buck, J Bertels, C Vanbilsen, T Dewaele, C Van Ongeval, ...
Medical Imaging 2020: Computer-Aided Diagnosis 11314, 1131423, 2020
12020
Convolutional neural networks for dose prediction in radiotherapy: from segmentation to regression
S Willems, J Bertels, W Crijns, E Sterpin, K Haustermans, F Maes
KU Leuven-ESAT/PSI, 2022
2022
Deep-Learning-Based Age Estimation From Panoramic Radiographs: Unraveling the Learning Process
YH Fang, L Ghyselen, J Bertels, K Verstraete, J De Tobel, ...
74th Annual Scientific Meeting, 2022
2022
Cross-modal distillation to improve MRI-based brain tumor segmentation with missing MRI sequences
M Rahimpour, J Bertels, A Radwan, H Vandermeulen, S Sunaert, ...
IEEE Transactions on Biomedical Engineering, 2021
2021
On the relationship between calibrated predictors and unbiased volume estimation
T Popordanoska, J Bertels, D Vandermeulen, F Maes, MB Blaschko
International Conference on Medical Image Computing and Computer-Assisted …, 2021
2021
Explainable-by-design Semi-Supervised Representation Learning for COVID-19 Diagnosis from CT Imaging
A Díaz Berenguer, H Sahli, B Joukovsky, M Kvasnytsia, I Dirks, ...
arXiv e-prints, arXiv: 2011.11719, 2020
2020
DeepLA: Automated Segmentation of Left Atrium from Interventional 3D Rotational Angiography Using CNN
K Bamps, SD Buck, J Bertels, R Willems, C Garweg, P Haemers, J Ector
International Workshop on Statistical Atlases and Computational Models of …, 2019
2019
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20