simon wiedemann
simon wiedemann
M. Sc.
Adresse e-mail validée de wiedemann.es
Titre
Citée par
Citée par
Année
Robust and communication-efficient federated learning from non-iid data
F Sattler, S Wiedemann, KR Müller, W Samek
IEEE transactions on neural networks and learning systems 31 (9), 3400-3413, 2019
1912019
Sparse binary compression: Towards distributed deep learning with minimal communication
F Sattler, S Wiedemann, KR Müller, W Samek
2019 International Joint Conference on Neural Networks (IJCNN), 1-8, 2019
612019
Compact and computationally efficient representation of deep neural networks
S Wiedemann, KR Müller, W Samek
IEEE transactions on neural networks and learning systems 31 (3), 772-785, 2019
242019
Deepcabac: A universal compression algorithm for deep neural networks
S Wiedemann, H Kirchhoffer, S Matlage, P Haase, A Marban, T Marinč, ...
IEEE Journal of Selected Topics in Signal Processing 14 (4), 700-714, 2020
192020
Entropy-constrained training of deep neural networks
S Wiedemann, A Marban, KR Müller, W Samek
2019 International Joint Conference on Neural Networks (IJCNN), 1-8, 2019
192019
Pruning by explaining: A novel criterion for deep neural network pruning
SK Yeom, P Seegerer, S Lapuschkin, A Binder, S Wiedemann, KR Müller, ...
Pattern Recognition 115, 107899, 2021
142021
DeepCABAC: Context-adaptive binary arithmetic coding for deep neural network compression
S Wiedemann, H Kirchhoffer, S Matlage, P Haase, A Marban, T Marinc, ...
arXiv preprint arXiv:1905.08318, 2019
52019
Dithered backprop: A sparse and quantized backpropagation algorithm for more efficient deep neural network training
S Wiedemann, T Mehari, K Kepp, W Samek
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020
22020
Deepcabac: Plug & Play Compression of Neural Network Weights and Weight Updates
D Neumann, F Sattler, H Kirchhoffer, S Wiedemann, K Müller, H Schwarz, ...
2020 IEEE International Conference on Image Processing (ICIP), 21-25, 2020
12020
Learning Sparse & Ternary Neural Networks with Entropy-Constrained Trained Ternarization (EC2T)
A Marban, D Becking, S Wiedemann, W Samek
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020
12020
Concepts for distributed learning of neural networks and/or transmission of parameterization updates therefor
W SAMEK, S WIEDEMANN, F SATTLER, KR Müller, T Wiegand
US Patent App. 17/096,887, 2021
2021
FantastIC4: A Hardware-Software Co-Design Approach for Efficiently Running 4bit-Compact Multilayer Perceptrons
S Wiedemann, S Shivapakash, P Wiedemann, D Becking, W Samek, ...
arXiv preprint arXiv:2012.11331, 2020
2020
Dependent Scalar Quantization For Neural Network Compression
P Haase, H Schwarz, H Kirchhoffer, S Wiedemann, T Marinc, A Marban, ...
2020 IEEE International Conference on Image Processing (ICIP), 36-40, 2020
2020
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–13