Scikit-learn: Machine learning in Python F Pedregosa, G Varoquaux, A Gramfort, V Michel, B Thirion, O Grisel, ... the Journal of machine Learning research 12, 2825-2830, 2011 | 80085 | 2011 |
API design for machine learning software: experiences from the scikit-learn project L Buitinck, G Louppe, M Blondel, F Pedregosa, A Mueller, O Grisel, ... arXiv preprint arXiv:1309.0238, 2013 | 2906 | 2013 |
Cross-language text classification using structural correspondence learning P Prettenhofer, B Stein Proceedings of the 48th annual meeting of the association for computational …, 2010 | 374 | 2010 |
Intrinsic plagiarism analysis B Stein, N Lipka, P Prettenhofer Language Resources and Evaluation 45, 63-82, 2011 | 215 | 2011 |
Cross-lingual adaptation using structural correspondence learning P Prettenhofer, B Stein ACM Transactions on Intelligent Systems and Technology (TIST) 3 (1), 1-22, 2011 | 92 | 2011 |
Duchesnay F Pedregosa, G Varoquaux, A Gramfort, V Michel, B Thirion, O Grisel, ... E.: Scikit-learn: Machine learning in Python. JMLR 12, 2825-2830, 2011 | 84* | 2011 |
Scikit-learn: Machine Learning in Python Gaël Varoquaux Bertrand Thirion Vincent Dubourg Alexandre Passos PEDREGOSA, VAROQUAUX, GRAMFORT ET AL. Matthieu Perrot F Pedregosa, V Michel, O Grisel, M Blondel, P Prettenhofer, R Weiss, ... Journal of Machine Learning Research 12, 2011 | 78 | 2011 |
Gradient boosted regression trees in scikit-learn P Prettenhofer, G Louppe PyData 2014, 2014 | 55 | 2014 |
Scikit-learn: Machine Learning in Python. arXiv 2012 F Pedregosa, G Varoquaux, A Gramfort, V Michel, B Thirion, O Grisel, ... arXiv preprint arXiv:1201.0490, 0 | 54 | |
a.(2011). Scikit-learn: Machine Learning in Python F Pedregosa, G Varoquaux, A Gramfort, V Michel, B Thirion, O Grisel, ... Journal of machine learning research 12, 2825-283, 0 | 41 | |
Different degrees of explicitness in intentional artifacts-studying user goals in a large search query log M Strohmaier, P Prettenhofer, M Lux Proceedings of the CSKGOI 8, 2008 | 20 | 2008 |
scikit-learn/scikit-learn: Scikit-learn 0.22. 1 O Grisel, A Mueller, A Gramfort, G Louppe, P Prettenhofer, M Blondel, ... Zenodo, 2020 | 12 | 2020 |
Efficient statement identification for automatic market forecasting H Wachsmuth, P Prettenhofer, B Stein Proceedings of the 23rd International Conference on Computational …, 2010 | 12 | 2010 |
Acquiring explicit user goals from search query logs M Strohmaier, P Prettenhofer, M Kröll 2008 IEEE/WIC/ACM International Conference on Web Intelligence and …, 2008 | 11 | 2008 |
Scikit-learn: machine learning in python J Mach Learn Res 12: 2825–2830 F Pedregosa, G Varoquaux, A Gramfort, V Michel, B Thirion, O Grisel, ... | 8 | 2011 |
Forecasting daily solar energy production using robust regression techniques G Louppe, P Prettenhofer 94th American Meteorological Society Annual Meeting, 2014 | 2 | 2014 |
scikit-learn/scikit-learn: scikit-learn 1.1. 1 O Grisel, A Mueller, A Gramfort, G Louppe, P Prettenhofer, M Blondel, ... Zenodo, 0 | 1 | |
An associative and adaptive network model for information retrieval in the Semantic Web P Scheir, P Prettenhofer, SN Lindstaedt, C Ghidini Progressive Concepts for Semantic Web Evolution: Applications and …, 2010 | | 2010 |
Applying Language Technologies to Support Work-Integrated Learning S Lindstaedt, G Beham, H Stern, P Prettenhofer, P Scheir Sprache und Datenverarbeitung 34 (2), 31-48, 2010 | | 2010 |
Equipping intelligent agents with commonsense knowledge acquired from search query logs: Results from an exploratory story M Strohmaier, M Kröll, P Prettenhofer Data Mining and Multi-agent Integration, 167-176, 2009 | | 2009 |