Follow
Yilun Xu
Yilun Xu
NVIDIA Research
Verified email at nvidia.com - Homepage
Title
Cited by
Cited by
Year
A survey on generative diffusion model
H Cao, C Tan, Z Gao, Y Xu, G Chen, PA Heng, SZ Li
arXiv preprint arXiv:2209.02646, 2022
3822022
L_dmi: A novel information-theoretic loss function for training deep nets robust to label noise
Y Xu, P Cao, Y Kong, Y Wang
Advances in neural information processing systems 32, 2019
305*2019
A theory of usable information under computational constraints
Y Xu, S Zhao, J Song, R Stewart, S Ermon
International Conference on Learning Representations (ICLR 2020), 2020
1712020
Can subnetwork structure be the key to out-of-distribution generalization?
D Zhang, K Ahuja, Y Xu, Y Wang, A Courville
International conference on machine learning, 12356-12367, 2021
1052021
Poisson Flow Generative Models
Y Xu, Z Liu, M Tegmark, T Jaakkola
Advances in Neural Information Processing Systems 35, 16782-16795, 2022
952022
PFGM++: Unlocking the potential of physics-inspired generative models
Y Xu, Z Liu, Y Tian, S Tong, M Tegmark, T Jaakkola
International Conference on Machine Learning (ICML), 2023, 2023
612023
Restart Sampling for Improving Generative Processes
Y Xu, M Deng, X Cheng, Y Tian, Z Liu, T Jaakkola
Advances in Neural Information Processing Systems 36 (NeurIPS 2023), 2023
562023
Max-MIG: an Information Theoretic Approach for Joint Learning from Crowds
P Cao, Y Xu, Y Kong, Y Wang
International Conference on Learning Representations (ICLR 2019), 2018
562018
Learning representations that support robust transfer of predictors
Y Xu, T Jaakkola
arXiv preprint arXiv:2110.09940, 2021
302021
Stable target field for reduced variance score estimation in diffusion models
Y Xu, S Tong, T Jaakkola
International Conference on Learning Representations (ICLR 2023), 2023
252023
Controlling directions orthogonal to a classifier
Y Xu, H He, T Shen, T Jaakkola
International Conference on Learning Representations (ICLR 2022), 2022
252022
Tcgm: An information-theoretic framework for semi-supervised multi-modality learning
X Sun, Y Xu, P Cao, Y Kong, L Hu, S Zhang, Y Wang
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23 …, 2020
252020
Particle Guidance: non-iid diverse sampling with diffusion models
G Corso, Y Xu, V De Bortoli, R Barzilay, T Jaakkola
arXiv preprint arXiv:2310.13102, 2023
232023
Anytime sampling for autoregressive models via ordered autoencoding
Y Xu, Y Song, S Garg, L Gong, R Shu, A Grover, S Ermon
International Conference on Learning Representations (ICLR 2021), 2021
222021
GenPhys: From physical processes to generative models
Z Liu, D Luo, Y Xu, T Jaakkola, M Tegmark
arXiv preprint arXiv:2304.02637, 2023
112023
DisCo-Diff: Enhancing continuous diffusion models with discrete latents
Y Xu, G Corso, T Jaakkola, A Vahdat, K Kreis
arXiv preprint arXiv:2407.03300, 2024
92024
Energy-based diffusion language models for text generation
M Xu, T Geffner, K Kreis, W Nie, Y Xu, J Leskovec, S Ermon, A Vahdat
arXiv preprint arXiv:2410.21357, 2024
82024
Heavy-tailed diffusion models
K Pandey, J Pathak, Y Xu, S Mandt, M Pritchard, A Vahdat, M Mardani
arXiv preprint arXiv:2410.14171, 2024
42024
Truncated Consistency Models
S Lee, Y Xu, T Geffner, G Fanti, K Kreis, A Vahdat, W Nie
arXiv preprint arXiv:2410.14895, 2024
12024
Think While You Generate: Discrete Diffusion with Planned Denoising
S Liu, J Nam, A Campbell, H Stärk, Y Xu, T Jaakkola, ...
arXiv preprint arXiv:2410.06264, 2024
12024
The system can't perform the operation now. Try again later.
Articles 1–20