Follow
Juho Lee
Juho Lee
Associate professor, KAIST
Verified email at kaist.ac.kr - Homepage
Title
Cited by
Cited by
Year
Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks
J Lee, Y Lee, J Kim, A Kosiorek, S Choi, YW Teh
International Conference on Machine Learning, 3744-3753, 2019
11272019
Learning to propagate labels: Transductive propagation network for few-shot learning
Y Liu, J Lee, M Park, S Kim, E Yang, SJ Hwang, Y Yang
arXiv preprint arXiv:1805.10002, 2018
8252018
Adversarial purification with score-based generative models
J Yoon, SJ Hwang, J Lee
International Conference on Machine Learning, 12062-12072, 2021
982021
Uncertainty-aware attention for reliable interpretation and prediction
J Heo, HB Lee, S Kim, J Lee, KJ Kim, E Yang, SJ Hwang
Advances in neural information processing systems 31, 2018
972018
Setvae: Learning hierarchical composition for generative modeling of set-structured data
J Kim, J Yoo, J Lee, S Hong
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021
572021
Bootstrapping neural processes
J Lee, Y Lee, J Kim, E Yang, SJ Hwang, YW Teh
Advances in neural information processing systems 33, 6606-6615, 2020
392020
Diversity matters when learning from ensembles
G Nam, J Yoon, Y Lee, J Lee
Advances in neural information processing systems 34, 8367-8377, 2021
342021
A multi-mode modulator for multi-domain few-shot classification
Y Liu, J Lee, L Zhu, L Chen, H Shi, Y Yang
Proceedings of the IEEE/CVF international conference on computer vision …, 2021
322021
Online video segmentation by bayesian split-merge clustering
J Lee, S Kwak, B Han, S Choi
Computer Vision–ECCV 2012: 12th European Conference on Computer Vision …, 2012
182012
Deep amortized clustering
J Lee, Y Lee, YW Teh
arXiv preprint arXiv:1909.13433, 2019
172019
DropMax: Adaptive variational softmax
HB Lee, J Lee, S Kim, E Yang, SJ Hwang
Advances in Neural Information Processing Systems 31, 2018
172018
Finite-Dimensional BFRY Priors and Variational Bayesian Inference for Power Law Models
J Lee, LF James, S Choi
Advances in Neural Information Processing Systems, 2016
172016
Learning to perturb word embeddings for out-of-distribution QA
S Lee, M Kang, J Lee, SJ Hwang
arXiv preprint arXiv:2105.02692, 2021
162021
Beyond the Chinese Restaurant and Pitman-Yor processes: Statistical Models with Double Power-law Behavior
F Ayed, J Lee, F Caron
International Conference on Machine Learning, 2019
142019
Deep mixed effect model using Gaussian processes: a personalized and reliable prediction for healthcare
I Chung, S Kim, J Lee, KJ Kim, SJ Hwang, E Yang
Proceedings of the AAAI conference on artificial intelligence 34 (04), 3649-3657, 2020
132020
Adaptive network sparsification with dependent variational beta-bernoulli dropout
J Lee, S Kim, J Yoon, HB Lee, E Yang, SJ Hwang
arXiv preprint arXiv:1805.10896, 2018
112018
Cost-effective interactive attention learning with neural attention processes
J Heo, J Park, H Jeong, KJ Kim, J Lee, E Yang, SJ Hwang
International Conference on Machine Learning, 4228-4238, 2020
92020
On divergence measures for bayesian pseudocoresets
B Kim, J Choi, S Lee, Y Lee, JW Ha, J Lee
Advances in Neural Information Processing Systems 35, 757-767, 2022
82022
Exploring the role of mean teachers in self-supervised masked auto-encoders
Y Lee, JR Willette, J Kim, J Lee, SJ Hwang
The Eleventh International Conference on Learning Representations, 2022
82022
Bayesian hierarchical clustering with exponential family: small-variance asymptotics and reducibility
J Lee, S Choi
Artificial Intelligence and Statistics, 581-589, 2015
82015
The system can't perform the operation now. Try again later.
Articles 1–20