Carsten Magnus
Carsten Magnus
F. Hoffmann-La Roche
Bestätigte E-Mail-Adresse bei - Startseite
Zitiert von
Zitiert von
Determinants of HIV-1 broadly neutralizing antibody induction
P Rusert, RD Kouyos, C Kadelka, H Ebner, M Schanz, M Huber, DL Braun, ...
Nature medicine 22 (11), 1260-1267, 2016
Interaction of the gp120 V1V2 loop with a neighboring gp120 unit shields the HIV envelope trimer against cross-neutralizing antibodies
P Rusert, A Krarup, C Magnus, OF Brandenberg, J Weber, AK Ehlert, ...
Journal of Experimental Medicine 208 (7), 1419-1433, 2011
Estimating the stoichiometry of human immunodeficiency virus entry
C Magnus, P Rusert, S Bonhoeffer, A Trkola, RR Regoes
Journal of virology 83 (3), 1523-1531, 2009
Different infectivity of HIV-1 strains is linked to number of envelope trimers required for entry
OF Brandenberg, C Magnus, P Rusert, RR Regoes, A Trkola
PLoS pathogens 11 (1), e1004595, 2015
Modelling the course of an HIV infection: Insights from ecology and evolution
S Alizon, C Magnus
Viruses 4 (10), 1984-2013, 2012
Capacity of broadly neutralizing antibodies to inhibit HIV-1 cell-cell transmission is strain-and epitope-dependent
L Reh, C Magnus, M Schanz, J Weber, T Uhr, P Rusert, A Trkola
PLoS pathogens 11 (7), e1004966, 2015
Classic reaction kinetics can explain complex patterns of antibiotic action
P Abel zur Wiesch, S Abel, S Gkotzis, P Ocampo, J Engelstädter, ...
Science Translational Medicine 7 (287), 287ra73, 2015
Taming the BEAST—A community teaching material resource for BEAST 2
J Barido-Sottani, V Bošková, LD Plessis, D Kühnert, C Magnus, V Mitov, ...
Systematic biology 67 (1), 170-174, 2018
Tracing HIV-1 transmission: envelope traits of HIV-1 transmitter and recipient pairs
CS Oberle, B Joos, P Rusert, NK Campbell, D Beauparlant, H Kuster, ...
Retrovirology 13 (1), 1-20, 2016
The HIV-1 entry process: a stoichiometric view
OF Brandenberg, C Magnus, RR Regoes, A Trkola
Trends in microbiology 23 (12), 763-774, 2015
Estimating the stoichiometry of HIV neutralization
C Magnus, RR Regoes
PLoS Computational Biology 6 (3), e1000713, 2010
Predicting HIV-1 transmission and antibody neutralization efficacy in vivo from stoichiometric parameters
OF Brandenberg, C Magnus, P Rusert, HF Günthard, RR Regoes, ...
PLoS pathogens 13 (5), e1006313, 2017
The influence of phylodynamic model specifications on parameter estimates of the Zika virus epidemic
V Boskova, T Stadler, C Magnus
Virus Evolution 4 (1), vex044, 2018
Delineating CD4 dependency of HIV-1: Adaptation to infect low level CD4 expressing target cells widens cellular tropism but severely impacts on envelope functionality
D Beauparlant, P Rusert, C Magnus, C Kadelka, J Weber, T Uhr, ...
PLoS pathogens 13 (3), e1006255, 2017
Restricted occupancy models for neutralization of HIV virions and populations
C Magnus, RR Regoes
Journal of Theoretical Biology 283 (1), 192-202, 2011
Profiling host ANP32A splicing landscapes to predict influenza A virus polymerase adaptation
P Domingues, D Eletto, C Magnus, HL Turkington, S Schmutz, O Zagordi, ...
Nature communications 10 (1), 1-12, 2019
Partial rescue of V1V2 mutant infectivity by HIV-1 cell-cell transmission supports the domain’s exceptional capacity for sequence variation
OF Brandenberg, P Rusert, C Magnus, J Weber, J Böni, HF Günthard, ...
Retrovirology 11 (1), 1-22, 2014
Analysis of the subunit stoichiometries in viral entry
C Magnus, RR Regoes
PLoS One 7 (3), e33441, 2012
Virus neutralisation: new insights from kinetic neutralisation curves
C Magnus
PLoS computational biology 9 (2), e1002900, 2013
HIV-1 resistance to neutralizing antibodies: Determination of antibody concentrations leading to escape mutant evolution
C Magnus, L Reh, A Trkola
Virus research 218, 57-70, 2016
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20