Change-point detection in time-series data by relative density-ratio estimation S Liu, M Yamada, N Collier, M Sugiyama Neural Networks 43, 72-83, 2013 | 555 | 2013 |
Density-difference estimation M Sugiyama, T Kanamori, T Suzuki, MC du Plessis, S Liu, I Takeuchi Neural Computation 25 (10), 2734-2775, 2013 | 83 | 2013 |
Direct divergence approximation between probability distributions and its applications in machine learning M Sugiyama, S Liu, MC Du Plessis, M Yamanaka, M Yamada, T Suzuki, ... Journal of Computing Science and Engineering 7 (2), 99-111, 2013 | 45 | 2013 |
Statistical outlier detection for diagnosis of cyber attacks in power state estimation Y Chakhchoukh, S Liu, M Sugiyama, H Ishii 2016 IEEE Power and Energy Society General Meeting (PESGM), 1-5, 2016 | 43 | 2016 |
Direct learning of sparse changes in Markov networks by density ratio estimation S Liu, JA Quinn, MU Gutmann, T Suzuki, M Sugiyama Neural computation 26 (6), 1169-1197, 2014 | 36 | 2014 |
Bias reduction and metric learning for nearest-neighbor estimation of Kullback-Leibler divergence YK Noh, M Sugiyama, S Liu, MC Plessis, FC Park, DD Lee Artificial Intelligence and Statistics, 669-677, 2014 | 32 | 2014 |
Bias reduction and metric learning for nearest-neighbor estimation of Kullback-Leibler divergence YK Noh, M Sugiyama, S Liu, MC Plessis, FC Park, DD Lee Artificial Intelligence and Statistics, 669-677, 2014 | 32 | 2014 |
Heterogeneous model reuse via optimizing multiparty multiclass margin XZ Wu, S Liu, ZH Zhou International Conference on Machine Learning, 6840-6849, 2019 | 29 | 2019 |
Support consistency of direct sparse-change learning in Markov networks S Liu, T Suzuki, R Relator, J Sese, M Sugiyama, K Fukumizu | 22 | 2017 |
Density-difference estimation M Sugiyama, T Kanamori, T Suzuki, M Plessis, S Liu, I Takeuchi Advances in neural information processing systems 25, 2012 | 21 | 2012 |
Trimmed density ratio estimation S Liu, A Takeda, T Suzuki, K Fukumizu Advances in neural information processing systems 30, 2017 | 17 | 2017 |
Learning sparse structural changes in high-dimensional Markov networks: A review on methodologies and theories S Liu, K Fukumizu, T Suzuki Behaviormetrika 44, 265-286, 2017 | 16 | 2017 |
Sliced Wasserstein variational inference M Yi, S Liu Asian Conference on Machine Learning, 1213-1228, 2023 | 14 | 2023 |
Direct learning of sparse changes in markov networks by density ratio estimation S Liu, JA Quinn, MU Gutmann, M Sugiyama Machine Learning and Knowledge Discovery in Databases: European Conference …, 2013 | 12 | 2013 |
Fisher efficient inference of intractable models S Liu, T Kanamori, W Jitkrittum, Y Chen Advances in Neural Information Processing Systems 32, 2019 | 11 | 2019 |
Support consistency of direct sparse-change learning in Markov networks S Liu, T Suzuki, M Sugiyama Proceedings of the AAAI Conference on Artificial Intelligence 29 (1), 2015 | 9 | 2015 |
Sequential Neural Score Estimation: Likelihood-Free Inference with Conditional Score Based Diffusion Models L Sharrock, J Simons, S Liu, M Beaumont arXiv preprint arXiv:2210.04872, 2022 | 8 | 2022 |
Estimating density models with complex truncation boundaries S Liu, T Kanamori arXiv preprint arXiv:1910.03834, 2019 | 7 | 2019 |
非定常環境下での学習: 共変量シフト適応, クラスバランス変化適応, 変化検知 杉山将, 山田誠, ドゥ・プレシマーティヌス・クリストフェル 日本統計学会誌 44 (1), 113-136, 2014 | 5 | 2014 |
Generic multiplicative methods for implementing machine learning algorithms on mapreduce S Liu, P Flach, N Cristianini arXiv preprint arXiv:1111.2111, 2011 | 5 | 2011 |