Suivre
Dylan J. Foster
Dylan J. Foster
Microsoft Research
Adresse e-mail validée de microsoft.com - Page d'accueil
Titre
Citée par
Citée par
Année
Spectrally-normalized margin bounds for neural networks
PL Bartlett, DJ Foster, MJ Telgarsky
Advances in neural information processing systems 30, 2017
8062017
Lower bounds for non-convex stochastic optimization
Y Arjevani, Y Carmon, JC Duchi, DJ Foster, N Srebro, B Woodworth
Mathematical Programming, 1-50, 2022
1252022
Naive exploration is optimal for online lqr
M Simchowitz, D Foster
International Conference on Machine Learning, 8937-8948, 2020
1002020
Orthogonal statistical learning
DJ Foster, V Syrgkanis
arXiv preprint arXiv:1901.09036, 2019
882019
Learning in games: Robustness of fast convergence
DJ Foster, Z Li, T Lykouris, K Sridharan, E Tardos
Advances In Neural Information Processing Systems, 4734-4742, 2016
822016
Beyond ucb: Optimal and efficient contextual bandits with regression oracles
D Foster, A Rakhlin
International Conference on Machine Learning, 3199-3210, 2020
702020
Independent policy gradient methods for competitive reinforcement learning
C Daskalakis, DJ Foster, N Golowich
Advances in neural information processing systems 33, 5527-5540, 2020
612020
Model selection for contextual bandits
DJ Foster, A Krishnamurthy, H Luo
Advances in Neural Information Processing Systems 32, 2019
582019
Practical contextual bandits with regression oracles
D Foster, A Agarwal, M Dudik, H Luo, R Schapire
International Conference on Machine Learning, 1539-1548, 2018
562018
Logistic regression: The importance of being improper
DJ Foster, S Kale, H Luo, M Mohri, K Sridharan
Conference On Learning Theory, 167-208, 2018
502018
Uniform convergence of gradients for non-convex learning and optimization
DJ Foster, A Sekhari, K Sridharan
Advances in Neural Information Processing Systems 31, 2018
432018
Parameter-free online learning via model selection
DJ Foster, S Kale, M Mohri, K Sridharan
Advances in Neural Information Processing Systems 30, 2017
422017
Adapting to misspecification in contextual bandits
DJ Foster, C Gentile, M Mohri, J Zimmert
Advances in Neural Information Processing Systems 33, 11478-11489, 2020
392020
Adaptive online learning
DJ Foster, A Rakhlin, K Sridharan
Advances in Neural Information Processing Systems 28, 2015
392015
Logarithmic regret for adversarial online control
D Foster, M Simchowitz
International Conference on Machine Learning, 3211-3221, 2020
372020
Instance-dependent complexity of contextual bandits and reinforcement learning: A disagreement-based perspective
DJ Foster, A Rakhlin, D Simchi-Levi, Y Xu
arXiv preprint arXiv:2010.03104, 2020
312020
The Complexity of Making the Gradient Small in Stochastic Convex Optimization
DJ Foster, A Sekhari, O Shamir, N Srebro, K Sridharan, B Woodworth
arXiv preprint arXiv:1902.04686, 2019
312019
Learning nonlinear dynamical systems from a single trajectory
D Foster, T Sarkar, A Rakhlin
Learning for Dynamics and Control, 851-861, 2020
302020
Distributed learning with sublinear communication
J Acharya, C De Sa, D Foster, K Sridharan
International Conference on Machine Learning, 40-50, 2019
262019
Online learning: Sufficient statistics and the burkholder method
DJ Foster, A Rakhlin, K Sridharan
Conference On Learning Theory, 3028-3064, 2018
242018
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20