Openassistant conversations-democratizing large language model alignment A Köpf, Y Kilcher, D von Rütte, S Anagnostidis, ZR Tam, K Stevens, ... Advances in Neural Information Processing Systems 36, 2024 | 362 | 2024 |
The odds are odd: A statistical test for detecting adversarial examples K Roth, Y Kilcher, T Hofmann International Conference on Machine Learning, 5498-5507, 2019 | 204 | 2019 |
Audio based bird species identification using deep learning techniques E Sprengel, M Jaggi, Y Kilcher, T Hofmann LifeCLEF 2016, 547-559, 2016 | 171 | 2016 |
How does BERT capture semantics? A closer look at polysemous words D Yenicelik, F Schmidt, Y Kilcher Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting …, 2020 | 62 | 2020 |
Adversarial training is a form of data-dependent operator norm regularization K Roth, Y Kilcher, T Hofmann Advances in Neural Information Processing Systems 33, 14973-14985, 2020 | 56 | 2020 |
Figaro: Generating symbolic music with fine-grained artistic control D von Rütte, L Biggio, Y Kilcher, T Hofmann arXiv preprint arXiv:2201.10936, 2022 | 34 | 2022 |
Semantic interpolation in implicit models Y Kilcher, A Lucchi, T Hofmann arXiv preprint arXiv:1710.11381, 2017 | 27 | 2017 |
Boosting search engines with interactive agents L Adolphs, B Boerschinger, C Buck, MC Huebscher, M Ciaramita, ... arXiv preprint arXiv:2109.00527, 2021 | 25 | 2021 |
Scalable adaptive stochastic optimization using random projections G Krummenacher, B McWilliams, Y Kilcher, JM Buhmann, N Meinshausen Advances in Neural Information Processing Systems 29, 2016 | 18 | 2016 |
FIGARO: Controllable music generation using learned and expert features D von Rütte, L Biggio, Y Kilcher, T Hofmann The Eleventh International Conference on Learning Representations, 2023 | 16 | 2023 |
Openassistant conversations-democratizing large language model alignment. CoRR, abs/2304.07327, 2023. doi: 10.48550 A Köpf, Y Kilcher, D von Rütte, S Anagnostidis, ZR Tam, K Stevens, ... arXiv preprint arXiv.2304.07327, 0 | 13 | |
Generative minimization networks: Training GANs without competition P Grnarova, Y Kilcher, KY Levy, A Lucchi, T Hofmann arXiv preprint arXiv:2103.12685, 2021 | 9 | 2021 |
Adversarial training generalizes data-dependent spectral norm regularization K Roth, Y Kilcher, T Hofmann ETH Zurich, Institute for Machine Learning, 2019 | 9 | 2019 |
Escaping flat areas via function-preserving structural network modifications Y Kilcher, G Bécigneul, T Hofmann | 3 | 2018 |
The best defense is a good offense: Countering black box attacks by predicting slightly wrong labels Y Kilcher, T Hofmann arXiv preprint arXiv:1711.05475, 2017 | 3 | 2017 |
Rethinking Neural Networks With Benford's Law SK Sahu, A Java, A Shaikh, Y Kilcher arXiv preprint arXiv:2102.03313, 2021 | 2 | 2021 |
Generator reversal Y Kilcher, A Lucchi, T Hofmann arXiv preprint arXiv:1707.09241, 2017 | 2 | 2017 |
Boosting search engines with interactive agents B Boerschinger, CCF Buck, LJG Espeholt, L Adolphs, LS Saralegui, ... Transactions on Machine Learning Research, 2022 | 1 | 2022 |
Meta answering for machine reading B Borschinger, J Boyd-Graber, C Buck, J Bulian, M Ciaramita, ... arXiv preprint arXiv:1911.04156, 2019 | 1 | 2019 |
Flexible Prior Distributions for Deep Generative Models Y Kilcher, A Lucchi, T Hofmann arXiv preprint arXiv:1710.11383, 2017 | 1 | 2017 |