Folgen
Kim Peter Wabersich
Kim Peter Wabersich
Postdoctoral Researcher, ETH Zurich
Bestätigte E-Mail-Adresse bei kimpeter.de - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Learning-based model predictive control: Toward safe learning in control
L Hewing, KP Wabersich, M Menner, MN Zeilinger
Annual Review of Control, Robotics, and Autonomous Systems 3, 269-296, 2020
2172020
Linear model predictive safety certification for learning-based control
KP Wabersich, MN Zeilinger
2018 IEEE Conference on Decision and Control (CDC), 7130-7135, 2018
932018
A predictive safety filter for learning-based control of constrained nonlinear dynamical systems
KP Wabersich, MN Zeilinger
Automatica 129, 109597, 2021
74*2021
Probabilistic model predictive safety certification for learning-based control
KP Wabersich, L Hewing, A Carron, MN Zeilinger
IEEE Transactions on Automatic Control 67 (1), 176-188, 2021
352021
Scalable synthesis of safety certificates from data with application to learning-based control
KP Wabersich, MN Zeilinger
2018 European Control Conference (ECC), 1691-1697, 2018
332018
Recursively feasible stochastic model predictive control using indirect feedback
L Hewing, KP Wabersich, MN Zeilinger
Automatica 119, 109095, 2020
312020
Wiggling through complex traffic: Planning trajectories constrained by predictions
J Schlechtriemen, KP Wabersich, KD Kuhnert
2016 IEEE Intelligent Vehicles Symposium (IV), 1293-1300, 2016
292016
On a correspondence between probabilistic and robust invariant sets for linear systems
L Hewing, A Carron, KP Wabersich, MN Zeilinger
2018 European Control Conference (ECC), 1642-1647, 2018
222018
Distributed model predictive safety certification for learning-based control
S Muntwiler, KP Wabersich, A Carron, MN Zeilinger
IFAC-PapersOnLine 53 (2), 5258-5265, 2020
132020
Bayesian model predictive control: Efficient model exploration and regret bounds using posterior sampling
KP Wabersich, M Zeilinger
Learning for Dynamics and Control, 455-464, 2020
92020
Performance and safety of Bayesian model predictive control: Scalable model-based RL with guarantees
KP Wabersich, MN Zeilinger
arXiv preprint arXiv:2006.03483, 2020
72020
Economic model predictive control for robust periodic operation with guaranteed closed-loop performance
KP Wabersich, FA Bayer, MA Müller, F Allgüwer
2018 European Control Conference (ECC), 507-513, 2018
62018
Advancing Bayesian optimization: The mixed-global-local (MGL) kernel and length-scale cool down
KP Wabersich, M Toussaint
arXiv preprint arXiv:1612.03117, 2016
62016
Automatic testing and minimax optimization of system parameters for best worst-case performance
KP Wabersich, M Toussaint
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2015
62015
A predictive safety filter for learning-based racing control
B Tearle, KP Wabersich, A Carron, MN Zeilinger
IEEE Robotics and Automation Letters 6 (4), 7635-7642, 2021
42021
Predictive control barrier functions: Enhanced safety mechanisms for learning-based control
KP Wabersich, MN Zeilinger
IEEE Transactions on Automatic Control, 2022
32022
Data-driven distributed stochastic model predictive control with closed-loop chance constraint satisfaction
S Muntwiler, KP Wabersich, L Hewing, MN Zeilinger
2021 European Control Conference (ECC), 210-215, 2021
32021
Nonlinear learning‐based model predictive control supporting state and input dependent model uncertainty estimates
KP Wabersich, MN Zeilinger
International Journal of Robust and Nonlinear Control 31 (18), 8897-8915, 2021
22021
Learning-based Moving Horizon Estimation through Differentiable Convex Optimization Layers
S Muntwiler, KP Wabersich, MN Zeilinger
Learning for Dynamics and Control Conference, 153-165, 2022
12022
Adaptive Model Predictive Safety Certification for Learning-based Control
A Didier, KP Wabersich, MN Zeilinger
2021 60th IEEE Conference on Decision and Control (CDC), 809-815, 2021
12021
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20