Analysis of intonation in unison choir singing H Cuesta, E Gómez Gutiérrez, A Martorell Domínguez, F Loáiciga | 58 | 2018 |
Multiple f0 estimation in vocal ensembles using convolutional neural networks H Cuesta, B McFee, E Gómez arXiv preprint arXiv:2009.04172, 2020 | 37 | 2020 |
Deep learning based source separation applied to choir ensembles D Petermann, P Chandna, H Cuesta, J Bonada, E Gómez arXiv preprint arXiv:2008.07645, 2020 | 36 | 2020 |
Dagstuhl ChoirSet: A multitrack dataset for MIR research on choral singing S Rosenzweig, H Cuesta, C Weiß, F Scherbaum, E Gómez, M Müller Transactions of the International Society for Music Information Retrieval 3 (1), 2020 | 35 | 2020 |
Deep learning for singing processing: Achievements, challenges and impact on singers and listeners E Gómez, M Blaauw, J Bonada, P Chandna, H Cuesta arXiv preprint arXiv:1807.03046, 2018 | 22 | 2018 |
Cough-based COVID-19 detection with contextual attention convolutional neural networks and gender information A Mallol-Ragolta, H Cuesta, E Gómez, BW Schuller | 17 | 2021 |
Multi-Type Outer Product-Based Fusion of Respiratory Sounds for Detecting COVID-19. A Mallol-Ragolta, H Cuesta, E Gómez, B Schuller Interspeech, 2163-2167, 2022 | 11 | 2022 |
A deep-learning based framework for source separation, analysis, and synthesis of choral ensembles P Chandna, H Cuesta, D Petermann, E Gómez Frontiers in Signal Processing 2, 808594, 2022 | 9 | 2022 |
A framework for multi-f0 modeling in SATB choir recordings H Cuesta, E Gómez, P Chandna arXiv preprint arXiv:1904.05086, 2019 | 7 | 2019 |
Data-driven pitch content description of choral singing recordings H Cuesta Universitat Pompeu Fabra, 2022 | 6 | 2022 |
Voice assignment in vocal quartets using deep learning models based on pitch salience H Cuesta, E Gómez Gutiérrez Ubiquity Press, 2022 | 5 | 2022 |
A deep learning based analysis-synthesis framework for unison singing P Chandna, H Cuesta, E Gómez arXiv preprint arXiv:2009.09875, 2020 | 5 | 2020 |
Automatic transcription of Flamenco guitar falsetas S Rodríguez, E Gómez Gutiérrez, H Cuesta Folk Music Analysis, 2018 | 4 | 2018 |
Can musicgen create training data for mir tasks? N Kroher, H Cuesta, A Pikrakis arXiv preprint arXiv:2311.09094, 2023 | 2 | 2023 |
Choir Singers Pilot-An online platform for choir singers practice M Gover, Á Sarasúa, H Parra, J Janer, O Mayor, H Cuesta, MP Pascual, ... Proceedings of the Web Audio Conference (WAC), 2021 | 2 | 2021 |
DAACI-VoDAn: Improving Vocal Detection with New Data and Methods H Cuesta, N Kroher, A Pikrakis, S Djordjevic 2023 31st European Signal Processing Conference (EUSIPCO), 136-140, 2023 | 1 | 2023 |
EIHW-MTG: Second DiCOVA Challenge System Report A Mallol-Ragolta, H Cuesta, E Gómez, BW Schuller arXiv preprint arXiv:2110.09239, 2021 | 1 | 2021 |
EIHW-MTG DiCOVA 2021 Challenge System Report A Mallol-Ragolta, H Cuesta, E Gómez, BW Schuller arXiv preprint arXiv:2110.06543, 2021 | 1 | 2021 |
Audio-based Music Retrieval E Gómez, H Cuesta, A Gkiokas, J Gómez-Cañón, L Porcaro, F Yesiler Information Retrieval: Advanced Topics and Techniques, 539-575, 2024 | | 2024 |
Automatic structure detection and visualization in symphonic music H Cuesta | | 2015 |