Electromagnetic theory and computation: a topological approach PW Gross, PW Gross, PR Kotiuga, RP Kotiuga Cambridge University Press, 2004 | 228 | 2004 |

On making cuts for magnetic scalar potentials in multiply connected regions PR Kotiuga Journal of Applied Physics 61 (8), 3916-3918, 1987 | 83 | 1987 |

Hodge decompositions and computational electromagnetics PR Kotiuga McGill University, 1984 | 71 | 1984 |

Data structures for geometric and topological aspects of finite element algorithms PW Gross, PR Kotiuga Progress in Electromagnetics Research 32, 151-169, 2001 | 43 | 2001 |

An algorithm to make cuts for magnetic scalar potentials in tetrahedral meshes based on the finite element method PR Kotiuga IEEE Transactions on Magnetics 25 (5), 4129-4131, 1989 | 42 | 1989 |

Helicity functionals and metric invariance in three dimensions PR Kotiuga IEEE transactions on magnetics 25 (4), 2813-2815, 1989 | 42 | 1989 |

Self-adjoint curl operators R Hiptmair, PR Kotiuga, S Tordeux Annali di matematica pura ed applicata 191 (3), 431-457, 2012 | 34 | 2012 |

Potential for computation in micromagnetics via topological conservation laws PR Kotiuga, T Toffoli Physica D: Nonlinear Phenomena 120 (1-2), 139-161, 1998 | 33 | 1998 |

Three‐dimensional micromagnetic simulations on the connection machine RC Giles, PR Kotiuga, FB Humphrey Journal of applied physics 67 (9), 5821-5823, 1990 | 28 | 1990 |

Toward an algorithm to make cuts for magnetic scalar potentials in finite element meshes PR Kotiuga Journal of Applied Physics 63 (8), 3357-3359, 1988 | 27 | 1988 |

Vector potential formulation for three‐dimensional magnetostatics PR Kotiuga, PP Silvester Journal of Applied Physics 53 (11), 8399-8401, 1982 | 27 | 1982 |

Finite element-based algorithms to make cuts for magnetic scalar potentials: Topological constraints and computational complexity PW Gross, PR Kotiuga Progress In Electromagnetics Research 32, 207-245, 2001 | 25 | 2001 |

The algebraic topology of Bloch points PR Kotiuga IEEE Transactions on magnetics 25 (5), 3476-3478, 1989 | 19 | 1989 |

Clebsch potentials and the visualization of three-dimensional solenoidal vector fields PR Kotiuga IEEE Transactions on Magnetics 27 (5), 3986-3989, 1991 | 16 | 1991 |

Variational principles for three‐dimensional magnetostatics based on helicity PR Kotiuga Journal of Applied Physics 63 (8), 3360-3362, 1988 | 15 | 1988 |

Topological considerations in coupling magnetic scalar potentials to stream functions describing surface currents PR Kotiuga IEEE transactions on magnetics 25 (4), 2925-2927, 1989 | 14 | 1989 |

Lower and upper bounds for the Rayleigh conductivity of a perforated plate S Laurens, S Tordeux, A Bendali, M Fares, PR Kotiuga ESAIM: Mathematical Modelling and Numerical Analysis 47 (6), 1691-1712, 2013 | 13 | 2013 |

Magnetostatics with scalar potentials in multiply connected regions PR Kotiuga IEE Proceedings A-Physical Science, Measurement and Instrumentation …, 1990 | 13 | 1990 |

Topological duality in three‐dimensional eddy‐current problems and its role in computer‐aided problem formulation PR Kotiuga Journal of applied physics 67 (9), 4717-4719, 1990 | 13 | 1990 |

Analysis of finite‐element matrices arising from discretizations of helicity functionals PR Kotiuga Journal of applied physics 67 (9), 5815-5817, 1990 | 12 | 1990 |