Folgen
Leila Arras
Leila Arras
Research Associate, Fraunhofer HHI, Germany
Bestätigte E-Mail-Adresse bei hhi.fraunhofer.de - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Explaining Recurrent Neural Network Predictions in Sentiment Analysis
L Arras, G Montavon, KR Müller, W Samek
EMNLP 2017 Workshop on Computational Approaches to Subjectivity, Sentiment …, 2017
3662017
"What is relevant in a text document?": An interpretable machine learning approach
L Arras, F Horn, G Montavon, KR Müller, W Samek
PLOS ONE 12 (8), e0181142, 2017
3202017
Explaining Predictions of Non-Linear Classifiers in NLP
L Arras, F Horn, G Montavon, KR Müller, W Samek
ACL 2016 Representation Learning for NLP (Rep4NLP), 1-7, 2016
1212016
Explaining and Interpreting LSTMs
L Arras, J Arjona-Medina, M Widrich, G Montavon, M Gillhofer, KR Müller, ...
Springer LNCS, Explainable AI: Interpreting, Explaining and Visualizing Deep …, 2019
752019
Evaluating Recurrent Neural Network Explanations
L Arras, A Osman, KR Müller, W Samek
ACL 2019 BlackboxNLP (oral), Analyzing & Interpreting Neural Networks for …, 2019
712019
Towards Ground Truth Evaluation of Visual Explanations
A Osman, L Arras, W Samek
arXiv:2003.07258v1, 2020
212020
Ground Truth Evaluation of Neural Network Explanations with CLEVR-XAI
L Arras, A Osman, W Samek
arXiv:2003.07258v2, 2021
132021
Causes of Outcome Learning: A causal inference-inspired machine learning approach to disentangling common combinations of potential causes of a health outcome
A Rieckmann, P Dworzynski, L Arras, S Lapuschkin, W Samek, OA Arah, ...
medRxiv 2020.12.10.20225243, 2020
22020
Explaining the Decisions of Convolutional and Recurrent Neural Networks
W Samek, L Arras, A Osman, G Montavon, KR Müller
Mathematical Aspects of Deep Learning (to appear), Cambridge University Press, 2021
2021
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–9