Blow-up lemma J Komlós, GN Sárközy, E Szemerédi Combinatorica 17, 109-123, 1997 | 365 | 1997 |
Proof of the Seymour conjecture for large graphs J Komlós, GN Sárközy, E Szemerédi Annals of Combinatorics 2, 43-60, 1998 | 177 | 1998 |
Proof of the Alon–Yuster conjecture J Komlós, G Sárközy, E Szemerédi Discrete Mathematics 235 (1-3), 255-269, 2001 | 171 | 2001 |
Three-color Ramsey numbers for paths A Gyárfás, M Ruszinkó*, GN Sárközy, E Szemerédi Combinatorica 27 (1), 35-69, 2007 | 124 | 2007 |
On the square of a Hamiltonian cycle in dense graphs J Komlós, GN Sárközy, E Szemerédi Random Structures & Algorithms 9 (1‐2), 193-211, 1996 | 120 | 1996 |
On the Pósa‐Seymour conjecture J Komlós, GN Sárközy, E Szemerédi Journal of Graph Theory 29 (3), 167-176, 1998 | 112 | 1998 |
An algorithmic version of the blow‐up lemma J Komlós, GN Sarkozy, E Szemerédi Random Structures & Algorithms 12 (3), 297-312, 1998 | 109 | 1998 |
Ramsey‐type results for Gallai colorings A Gyárfás, GN Sárközy, A Sebő, S Selkow Journal of Graph Theory 64 (3), 233-243, 2010 | 101 | 2010 |
An improved bound for the monochromatic cycle partition number A Gyárfás, M Ruszinkó, GN Sárközy, E Szemerédi Journal of Combinatorial Theory, Series B 96 (6), 855-873, 2006 | 95 | 2006 |
Spanning trees in dense graphs J Komlós, GN Sárkózy, E Szemerédi Combinatorics, Probability and Computing 10 (5), 397-416, 2001 | 92 | 2001 |
Proof of a packing conjecture of Bollobás J Komlós, GN Sárközy, E Szemerédi Combinatorics, Probability and Computing 4 (3), 241-255, 1995 | 89 | 1995 |
How to avoid using the regularity lemma: Pósa’s conjecture revisited I Levitt, GN Sárközy, E Szemerédi Discrete Mathematics 310 (3), 630-641, 2010 | 66 | 2010 |
Spectral clustering in educational data mining S Trivedi, Z Pardos, G Sárközy, N Heffernan Educational Data Mining 2011, 2010 | 64 | 2010 |
Partitioning 2-edge-colored graphs by monochromatic paths and cycles J Balogh, J Barát, D Gerbner, A Gyárfás, GN Sárközy Combinatorica 34 (5), 507-526, 2014 | 48 | 2014 |
Partitioning -Colored Complete Graphs into Three Monochromatic Cycles A Gyárfás, M Ruszinkó, GN Sárközy, E Szemerédi the electronic journal of combinatorics 18 (1), P53, 2011 | 48 | 2011 |
Monochromatic Hamiltonian Berge-cycles in colored complete uniform hypergraphs A Gyárfás, J Lehel, GN Sárközy, RH Schelp Journal of Combinatorial Theory, Series B 98 (2), 342-358, 2008 | 46 | 2008 |
An extension of the Ruzsa-Szemerédi theorem GN Sárközy, S Selkow Combinatorica 25, 77-84, 2004 | 46 | 2004 |
On k‐ordered Hamiltonian graphs HA Kierstead, GN Sárközy, SM Selkow Journal of Graph Theory 32 (1), 17-25, 1999 | 46 | 1999 |
Clustered knowledge tracing ZA Pardos, S Trivedi, NT Heffernan, GN Sárközy Intelligent Tutoring Systems: 11th International Conference, ITS 2012 …, 2012 | 42 | 2012 |
Gallai colorings of non-complete graphs A Gyárfás, GN Sárközy Discrete Mathematics 310 (5), 977-980, 2010 | 42 | 2010 |