Follow
Bogdan Burlacu
Bogdan Burlacu
University of Applied Sciences Upper Austria
Verified email at fh-ooe.at - Homepage
Title
Cited by
Cited by
Year
Contemporary symbolic regression methods and their relative performance
W La Cava, B Burlacu, M Virgolin, M Kommenda, P Orzechowski, ...
Advances in neural information processing systems 2021 (DB1), 1, 2021
2412021
Parameter identification for symbolic regression using nonlinear least squares
M Kommenda, B Burlacu, G Kronberger, M Affenzeller
Genetic Programming and Evolvable Machines 21 (3), 471-501, 2020
1142020
Operon C++ an efficient genetic programming framework for symbolic regression
B Burlacu, G Kronberger, M Kommenda
Proceedings of the 2020 Genetic and Evolutionary Computation Conference …, 2020
942020
Shape-constrained symbolic regression—improving extrapolation with prior knowledge
G Kronberger, FO de França, B Burlacu, C Haider, M Kommenda
Evolutionary Computation 30 (1), 75-98, 2022
472022
Gaining deeper insights in symbolic regression
M Affenzeller, SM Winkler, G Kronberger, M Kommenda, B Burlacu, ...
Genetic Programming Theory and Practice XI, 175-190, 2014
462014
Evolving simple symbolic regression models by multi-objective genetic programming
M Kommenda, G Kronberger, M Affenzeller, SM Winkler, B Burlacu
Genetic Programming Theory and Practice XIII, 1-19, 2016
402016
Symbolic regression by exhaustive search: Reducing the search space using syntactical constraints and efficient semantic structure deduplication
L Kammerer, G Kronberger, B Burlacu, SM Winkler, M Kommenda, ...
Genetic programming theory and practice XVII, 79-99, 2020
292020
Visualization of genetic lineages and inheritance information in genetic programming
B Burlacu, M Affenzeller, M Kommenda, S Winkler, G Kronberger
Proceedings of the 15th annual conference companion on Genetic and …, 2013
292013
Shape-constrained multi-objective genetic programming for symbolic regression
C Haider, FO de Franca, B Burlacu, G Kronberger
Applied Soft Computing 132, 109855, 2023
172023
White box vs. black box modeling: On the performance of deep learning, random forests, and symbolic regression in solving regression problems
M Affenzeller, B Burlacu, V Dorfer, S Dorl, G Halmerbauer, ...
Computer Aided Systems Theory–EUROCAST 2019: 17th International Conference …, 2020
152020
Dynamic observation of genotypic and phenotypic diversity for different symbolic regression gp variants
M Affenzeller, SM Winkler, B Burlacu, G Kronberger, M Kommenda, ...
Proceedings of the genetic and evolutionary computation conference companion …, 2017
142017
Sliding window symbolic regression for detecting changes of system dynamics
SM Winkler, M Affenzeller, G Kronberger, M Kommenda, B Burlacu, ...
Genetic Programming Theory and Practice XII, 91-107, 2015
132015
Genetic programming with data migration for symbolic regression
M Kommenda, M Affenzeller, B Burlacu, G Kronberger, SM Winkler
Proceedings of the Companion Publication of the 2014 Annual Conference on …, 2014
132014
Using shape constraints for improving symbolic regression models
C Haider, FO de França, B Burlacu, G Kronberger
arXiv preprint arXiv:2107.09458, 2021
112021
Parsimony measures in multi-objective genetic programming for symbolic regression
B Burlacu, G Kronberger, M Kommenda, M Affenzeller
Proceedings of the genetic and evolutionary computation conference companion …, 2019
112019
Interpretable symbolic regression for data science: analysis of the 2022 competition
FO de França, M Virgolin, M Kommenda, MS Majumder, M Cranmer, ...
arXiv preprint arXiv:2304.01117, 2023
102023
Methods for genealogy and building block analysis in genetic programming
B Burlacu, M Affenzeller, S Winkler, M Kommenda, G Kronberger
Computational Intelligence and Efficiency in Engineering Systems, 61-74, 2015
102015
Genetic Programming Theory and Practice XVII
L Kammerer, G Kronberger, B Burlacu, SM Winkler, M Kommenda, ...
Springer, Cham, 2020
92020
Comparing optimistic and pessimistic constraint evaluation in shape-constrained symbolic regression
C Haider, FO de França, G Kronberger, B Burlacu
Proceedings of the Genetic and Evolutionary Computation Conference, 938-945, 2022
82022
Contemporary symbolic regression methods and their relative performance, 2021
W La Cava, P Orzechowski, B Burlacu, FO de França, M Virgolin, Y Jin, ...
URL https://arxiv. org/abs/2107.14351, 2021
82021
The system can't perform the operation now. Try again later.
Articles 1–20