Follow
Manuel Schürch
Manuel Schürch
Researcher at Harvard University and Dana-Farber Cancer Institute (DFCI)
Verified email at dfci.harvard.edu
Title
Cited by
Cited by
Year
Recursive estimation for sparse Gaussian process regression
M Schürch, D Azzimonti, A Benavoli, M Zaffalon
Automatica 120, 109127, 2020
422020
Simts: Rethinking contrastive representation learning for time series forecasting
X Zheng, X Chen, M Schürch, A Mollaysa, A Allam, M Krauthammer
arXiv preprint arXiv:2303.18205, 2023
362023
Correlated product of experts for sparse Gaussian process regression
M Schürch, D Azzimonti, A Benavoli, M Zaffalon
Machine Learning 112 (5), 1411-1432, 2023
142023
Generative time series models with interpretable latent processes for complex disease trajectories
C Trottet, M Schürch, A Mollaysa, A Allam, M Krauthammer
Deep Generative Models for Health Workshop NeurIPS 2023, 2023
8*2023
pcalg: Methods for graphical models and causal inference
M Kalisch, A Hauser, M Maechler, D Colombo, D Entner, P Hoyer, ...
R Package retrieved from https://CRAN. R-project. org/package= pcalg, 2021
82021
Package ‘pcalg’
M Kalisch, A Hauser, M Maechler, D Colombo, D Entner, P Hoyer, ...
62024
Generating Personalized Insulin Treatments Strategies with Conditional Generative Time Series Models
M Schürch, X Li, A Allam, G Hofer, A Mollaysa, C Cavelti-Weder, ...
Deep Generative Models for Health Workshop NeurIPS 2023, 2023
3*2023
Towards AI-Based Precision Oncology: A Machine Learning Framework for Personalized Counterfactual Treatment Suggestions based on Multi-Omics Data
M Schürch, L Boos, V Heinzelmann-Schwarz, G Gut, M Krauthammer, ...
arXiv preprint arXiv:2402.12190, 2024
22024
Sparse information filter for fast gaussian process regression
L Kania, M Schürch, D Azzimonti, A Benavoli
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2021
22021
Abstract B053: NucAE: Autoencoder-based enhancement of nucleosome occupancy signals from low-coverage cfDNA sequencing
Z Balázs, J Radig, N Wolford, M Schürch, M Krauthammer
Clinical Cancer Research 30 (21_Supplement), B053-B053, 2024
2024
Learning Personalized Treatment Decisions in Precision Medicine: Disentangling Treatment Assignment Bias in Counterfactual Outcome Prediction and Biomarker Identification
M Vollenweider, M Schürch, C Rohrer, G Gut, M Krauthammer, A Wicki
arXiv preprint arXiv:2410.00509, 2024
2024
Clustering of Disease Trajectories with Explainable Machine Learning: A Case Study on Postoperative Delirium Phenotypes
X Zheng, M Schürch, X Chen, MA Komninou, R Schüpbach, A Allam, ...
arXiv preprint arXiv:2405.03327, 2024
2024
Two-Stage Aggregation with Dynamic Local Attention for Irregular Time Series
X Chen, X Zheng, A Mollaysa, M Schürch, A Allam, M Krauthammer
arXiv preprint arXiv:2311.07744, 2023
2023
Dynamic Local Attention with Hierarchical Patching for Irregular Clinical Time Series.
X Chen, X Zheng, A Mollaysa, M Schürch, A Allam, M Krauthammer
CoRR, 2023
2023
Contributions to scalable gaussian processes
MP Schürch
2022
Orthogonally Decoupled Variational Fourier Features
D Azzimonti, M Schürch, A Benavoli, M Zaffalon
arXiv preprint arXiv:2007.06363, 2020
2020
The system can't perform the operation now. Try again later.
Articles 1–16