Follow
Nico Lang
Nico Lang
University of Copenhagen, DIKU, Pioneer Centre for AI
Verified email at geod.baug.ethz.ch - Homepage
Title
Cited by
Cited by
Year
From Google Maps to a fine-grained catalog of street trees
S Branson, JD Wegner, D Hall, N Lang, K Schindler, P Perona
ISPRS Journal of Photogrammetry and Remote Sensing 135, 13-30, 2018
1012018
Country-wide high-resolution vegetation height mapping with Sentinel-2
N Lang, K Schindler, JD Wegner
Remote Sensing of Environment 233, 111347, 2019
922019
Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles
N Lang, N Kalischek, J Armston, K Schindler, R Dubayah, JD Wegner
Remote sensing of environment 268, 112760, 2022
65*2022
Geocoding of trees from street addresses and street-level images
D Laumer, N Lang, N van Doorn, O Mac Aodha, P Perona, JD Wegner
ISPRS Journal of Photogrammetry and Remote Sensing 162, 125-136, 2020
292020
A high-resolution canopy height model of the Earth
N Lang, W Jetz, K Schindler, JD Wegner
arXiv preprint arXiv:2204.08322, 2022
232022
Defoliation estimation of forest trees from ground-level images
U Kälin, N Lang, C Hug, A Gessler, JD Wegner
Remote Sensing of Environment 223, 143-153, 2019
202019
GRAINet: mapping grain size distributions in river beds from UAV images with convolutional neural networks
N Lang, A Irniger, A Rozniak, R Hunziker, JD Wegner, K Schindler
Hydrology and Earth System Sciences 25 (5), 2567-2597, 2021
182021
High carbon stock mapping at large scale with optical satellite imagery and spaceborne LIDAR
N Lang, K Schindler, JD Wegner
arXiv preprint arXiv:2107.07431, 2021
82021
A High-Resolution Canopy Height Model of the Earth. arXiv 2022
N Lang, W Jetz, K Schindler, JD Wegner
arXiv preprint arXiv:2204.08322, 0
6
Learning geometric soft constraints for multi-view instance matching across street-level panoramas
AS Nassar, N Lang, S Lefevre, JD Wegner
2019 Joint Urban Remote Sensing Event (JURSE), 1-4, 2019
52019
Country-wide Retrieval of Forest Structure From Optical and SAR Satellite Imagery With Deep Ensembles
A Becker, S Russo, S Puliti, N Lang, K Schindler, JD Wegner
arXiv preprint arXiv:2111.13154, 2021
42021
Satellite-based high-resolution maps of cocoa planted area for C\^ ote d'Ivoire and Ghana
N Kalischek, N Lang, C Renier, RC Daudt, T Addoah, W Thompson, ...
arXiv preprint arXiv:2206.06119, 2022
22022
Country-wide retrieval of forest structure from optical and SAR satellite imagery with deep ensembles
A Becker, S Russo, S Puliti, N Lang, K Schindler, JD Wegner
ISPRS Journal of Photogrammetry and Remote Sensing 195, 269-286, 2023
12023
Satellite-based high-resolution maps of cocoa for Côte d'Ivoire and Ghana
N Kalischek, N Lang, C Renier, RC Daudt, T Addoah, W Thompson, ...
Nature Food, 2022
12022
The overlooked contribution of trees outside forests to tree cover and woody biomass across Europe
S Liu, M Brandt, T Nord-Larsen, J Chave, F Reiner, N Lang, X Tong, ...
2023
Annual vegetation height maps based on Sentinel-2 data-Potential applications for the Swiss National Forest Inventory
M Rüetschi, Y Jiang, N Lang, A Becker, LT Waser, M Marty, K Schindler, ...
ESA Living Planet Symposium 2022 (LPS 2022), 2022
2022
Towards traceable, transparent and sustainable cocoa farming in Côte d’Ivoire and Ghana using publicly available satellite imagery and deep learning
N Kalischek, N Lang, RC Daudt, T Addoah, W Thompson, WJ Blaser-Hart, ...
ESA Living Planet Symposium 2022 (LPS 2022), 2022
2022
GRAINet: Automatische Kornverteilungsanalysen aus Drohnen-Bildern mit CNNs
A Irniger, A Rozniak, N Lang, JD Wegner, K Schindler
Wasserbau-Symposium 2021. Wasserbau in Zeiten von Energiewende …, 2021
2021
Geocoding of trees from street addresses and street-level images
OM Aodha, D Laumer, N Lang, N van Doorn, O Mac Aodha, P Perona, ...
2020
Mapping Vegetation Height from Multispectral Sentinel-2 Images at Country Scale using Deep Learning
N Lang, JD Wegner, K Schindler
ESA Living Planet Symposium 2019 (LPS 2019), 2019
2019
The system can't perform the operation now. Try again later.
Articles 1–20