Folgen
Chenru Duan
Chenru Duan
Deep Principle; MIT
Bestätigte E-Mail-Adresse bei mit.edu - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Computational discovery of transition-metal complexes: from high-throughput screening to machine learning
A Nandy, C Duan, MG Taylor, F Liu, AH Steeves, HJ Kulik
Chemical reviews 121 (16), 9927-10000, 2021
2362021
A quantitative uncertainty metric controls error in neural network-driven chemical discovery
JP Janet, C Duan, T Yang, A Nandy, HJ Kulik
Chemical science 10 (34), 7913-7922, 2019
2302019
Accurate multiobjective design in a space of millions of transition metal complexes with neural-network-driven efficient global optimization
JP Janet, S Ramesh, C Duan, HJ Kulik
ACS central science 6 (4), 513-524, 2020
1742020
Strategies and software for machine learning accelerated discovery in transition metal chemistry
A Nandy, C Duan, JP Janet, S Gugler, HJ Kulik
Industrial & Engineering Chemistry Research 57 (42), 13973-13986, 2018
1652018
Using machine learning and data mining to leverage community knowledge for the engineering of stable metal–organic frameworks
A Nandy, C Duan, HJ Kulik
Journal of the American Chemical Society 143 (42), 17535-17547, 2021
1342021
Designing in the face of uncertainty: exploiting electronic structure and machine learning models for discovery in inorganic chemistry
JP Janet, F Liu, A Nandy, C Duan, T Yang, S Lin, HJ Kulik
Inorganic chemistry 58 (16), 10592-10606, 2019
1082019
Zero-temperature localization in a sub-Ohmic spin-boson model investigated by an extended hierarchy equation of motion
C Duan, Z Tang, J Cao, J Wu
Physical Review B 95 (21), 214308, 2017
1022017
Machine learning accelerates the discovery of design rules and exceptions in stable metal–oxo intermediate formation
A Nandy, J Zhu, JP Janet, C Duan, RB Getman, HJ Kulik
Acs Catalysis 9 (9), 8243-8255, 2019
942019
Learning from failure: predicting electronic structure calculation outcomes with machine learning models
C Duan, JP Janet, F Liu, A Nandy, HJ Kulik
Journal of Chemical Theory and Computation 15 (4), 2331-2345, 2019
902019
MOFSimplify, machine learning models with extracted stability data of three thousand metal–organic frameworks
A Nandy, G Terrones, N Arunachalam, C Duan, DW Kastner, HJ Kulik
Scientific Data 9 (1), 74, 2022
862022
Seeing is believing: Experimental spin states from machine learning model structure predictions
MG Taylor, T Yang, S Lin, A Nandy, JP Janet, C Duan, HJ Kulik
The Journal of Physical Chemistry A 124 (16), 3286-3299, 2020
712020
New strategies for direct methane-to-methanol conversion from active learning exploration of 16 million catalysts
A Nandy, C Duan, C Goffinet, HJ Kulik
Jacs Au 2 (5), 1200-1213, 2022
602022
Audacity of huge: overcoming challenges of data scarcity and data quality for machine learning in computational materials discovery
A Nandy, C Duan, HJ Kulik
Current Opinion in Chemical Engineering 36, 100778, 2022
582022
Navigating transition-metal chemical space: artificial intelligence for first-principles design
JP Janet, C Duan, A Nandy, F Liu, HJ Kulik
Accounts of Chemical Research 54 (3), 532-545, 2021
562021
Rapid detection of strong correlation with machine learning for transition-metal complex high-throughput screening
F Liu, C Duan, HJ Kulik
The journal of physical chemistry letters 11 (19), 8067-8076, 2020
562020
Machine learning-aided generative molecular design
Y Du, AR Jamasb, J Guo, T Fu, C Harris, Y Wang, C Duan, P Liò, ...
Nature Machine Intelligence 6 (6), 589-604, 2024
512024
Accurate transition state generation with an object-aware equivariant elementary reaction diffusion model
C Duan, Y Du, H Jia, HJ Kulik
Nature Computational Science 3, 1045–1055, 2023
512023
Putting density functional theory to the test in machine-learning-accelerated materials discovery
C Duan, F Liu, A Nandy, HJ Kulik
The Journal of Physical Chemistry Letters 12 (19), 4628-4637, 2021
462021
The impact of large language models on scientific discovery: a preliminary study using gpt-4
MR AI4Science, MA Quantum
arXiv preprint arXiv:2311.07361, 2023
452023
Data-driven approaches can overcome the cost–accuracy trade-off in multireference diagnostics
C Duan, F Liu, A Nandy, HJ Kulik
Journal of Chemical Theory and Computation 16 (7), 4373-4387, 2020
452020
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20