Degenerate parabolic stochastic partial differential equations: Quasilinear case A Debussche, M Hofmanová, J Vovelle | 140 | 2016 |
Stochastically forced compressible fluid flows D Breit, E Feireisl, M Hofmanová Walter de Gruyter GmbH & Co KG, 2018 | 113 | 2018 |
Degenerate parabolic stochastic partial differential equations M Hofmanová Stochastic Processes and their Applications 123 (12), 4294-4336, 2013 | 110 | 2013 |
A PDE Construction of the Euclidean Quantum Field Theory M Gubinelli, M Hofmanová Communications in Mathematical Physics 384 (1), 1-75, 2021 | 105 | 2021 |
Global Solutions to Elliptic and Parabolic Models in Euclidean Space M Gubinelli, M Hofmanová Communications in Mathematical Physics 368 (3), 1201-1266, 2019 | 101 | 2019 |
A regularity result for quasilinear stochastic partial differential equations of parabolic type A Debussche, S De Moor, M Hofmanová SIAM Journal on Mathematical Analysis 47 (2), 1590-1614, 2015 | 64 | 2015 |
Stochastic Navier-Stokes equations for compressible fluids D Breit, M Hofmanova Indiana University Mathematics Journal, 1183-1250, 2016 | 62 | 2016 |
A priori estimates for rough PDEs with application to rough conservation laws A Deya, M Gubinelli, M Hofmanová, S Tindel Journal of Functional analysis 276 (12), 3577-3645, 2019 | 61 | 2019 |
An exponential-type integrator for the KdV equation M Hofmanová, K Schratz Numerische Mathematik 136 (4), 1117-1137, 2017 | 59 | 2017 |
Well-posedness and regularity for quasilinear degenerate parabolic-hyperbolic SPDE B Gess, M Hofmanová The Annals of Probability 46 (5), 2495-2544, 2018 | 57 | 2018 |
On weak solutions of stochastic differential equations M Hofmanová, J Seidler Stochastic analysis and applications 30 (1), 100-121, 2012 | 56 | 2012 |
On the Navier–Stokes equation perturbed by rough transport noise M Hofmanová, JM Leahy, T Nilssen Journal of Evolution Equations 19 (1), 203-247, 2019 | 44 | 2019 |
Strong solutions of semilinear stochastic partial differential equations M Hofmanová Nonlinear Differential Equations and Applications NoDEA 20, 757-778, 2013 | 42 | 2013 |
Global-in-time probabilistically strong and Markov solutions to stochastic 3D Navier–Stokes equations: existence and nonuniqueness M Hofmanová, R Zhu, X Zhu The Annals of probability 51 (2), 524-579, 2023 | 41 | 2023 |
Solution semiflow to the isentropic Euler system D Breit, E Feireisl, M Hofmanová Archive for Rational Mechanics and Analysis 235, 167-194, 2020 | 41 | 2020 |
An energy method for rough partial differential equations A Hocquet, M Hofmanová Journal of Differential Equations 265 (4), 1407-1466, 2018 | 41 | 2018 |
Quasilinear generalized parabolic Anderson model equation I Bailleul, A Debussche, M Hofmanova Stochastics and Partial Differential Equations: Analysis and Computations 7 …, 2019 | 40 | 2019 |
Incompressible limit for compressible fluids with stochastic forcing D Breit, E Feireisl, M Hofmanová Archive for Rational Mechanics and Analysis 222, 895-926, 2016 | 39 | 2016 |
Local strong solutions to the stochastic compressible Navier–Stokes system D Breit, E Feireisl, M Hofmanová Communications in Partial Differential Equations 43 (2), 313-345, 2018 | 38 | 2018 |
On Ill‐and Well‐Posedness of Dissipative Martingale Solutions to Stochastic 3D Euler Equations M Hofmanová, R Zhu, X Zhu Communications on Pure and Applied Mathematics 75 (11), 2446-2510, 2022 | 37 | 2022 |