Follow
Albert P. Bartok
Albert P. Bartok
Verified email at warwick.ac.uk
Title
Cited by
Cited by
Year
Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
AP Bartók, MC Payne, R Kondor, G Csányi
Physical review letters 104 (13), 136403, 2010
28932010
On representing chemical environments
AP Bartók, R Kondor, G Csányi
Physical Review B—Condensed Matter and Materials Physics 87 (18), 184115, 2013
25652013
Gaussian process regression for materials and molecules
VL Deringer, AP Bartók, N Bernstein, DM Wilkins, M Ceriotti, G Csányi
Chemical Reviews 121 (16), 10073-10141, 2021
8392021
Comparing molecules and solids across structural and alchemical space
S De, AP Bartók, G Csányi, M Ceriotti
Physical Chemistry Chemical Physics 18 (20), 13754-13769, 2016
7762016
Machine learning unifies the modeling of materials and molecules
AP Bartók, S De, C Poelking, N Bernstein, JR Kermode, G Csányi, ...
Science advances 3 (12), e1701816, 2017
7312017
G aussian approximation potentials: A brief tutorial introduction
AP Bartók, G Csányi
International Journal of Quantum Chemistry 115 (16), 1051-1057, 2015
6672015
Machine learning a general-purpose interatomic potential for silicon
AP Bartók, J Kermode, N Bernstein, G Csányi
Physical Review X 8 (4), 041048, 2018
6162018
Physics-inspired structural representations for molecules and materials
F Musil, A Grisafi, AP Bartók, C Ortner, G Csányi, M Ceriotti
Chemical Reviews 121 (16), 9759-9815, 2021
4692021
Modeling molecular interactions in water: From pairwise to many-body potential energy functions
GA Cisneros, KT Wikfeldt, L Ojamäe, J Lu, Y Xu, H Torabifard, AP Bartók, ...
Chemical reviews 116 (13), 7501-7528, 2016
4372016
Accuracy and transferability of Gaussian approximation potential models for tungsten
WJ Szlachta, AP Bartók, G Csányi
Physical Review B 90 (10), 104108, 2014
3352014
Realistic atomistic structure of amorphous silicon from machine-learning-driven molecular dynamics
VL Deringer, N Bernstein, AP Bartók, MJ Cliffe, RN Kerber, LE Marbella, ...
The journal of physical chemistry letters 9 (11), 2879-2885, 2018
2692018
Machine-learning approach for one-and two-body corrections to density functional theory: Applications to molecular and condensed water
AP Bartók, MJ Gillan, FR Manby, G Csányi
Physical Review B—Condensed Matter and Materials Physics 88 (5), 054104, 2013
2372013
Regularized SCAN functional
AP Bartók, JR Yates
The Journal of chemical physics 150 (16), 2019
2332019
Incompleteness of atomic structure representations
SN Pozdnyakov, MJ Willatt, AP Bartók, C Ortner, G Csányi, M Ceriotti
Physical Review Letters 125 (16), 166001, 2020
2052020
Roadmap on machine learning in electronic structure
HJ Kulik, T Hammerschmidt, J Schmidt, S Botti, MAL Marques, M Boley, ...
Electronic Structure 4 (2), 023004, 2022
1442022
Efficient sampling of atomic configurational spaces
LB Pártay, AP Bartók, G Csányi
The Journal of Physical Chemistry B 114 (32), 10502-10512, 2010
1252010
Determining pressure-temperature phase diagrams of materials
RJN Baldock, LB Pártay, AP Bartók, MC Payne, G Csányi
Physical Review B 93 (17), 174108, 2016
752016
First-principles energetics of water clusters and ice: A many-body analysis
MJ Gillan, D Alfč, AP Bartók, G Csányi
The Journal of chemical physics 139 (24), 2013
542013
Machine learning force fields based on local parametrization of dispersion interactions: Application to the phase diagram of
H Muhli, X Chen, AP Bartók, P Hernández-León, G Csányi, T Ala-Nissila, ...
Physical Review B 104 (5), 054106, 2021
532021
Nested sampling for materials: The case of hard spheres
LB Pártay, AP Bartók, G Csányi
Physical Review E 89 (2), 022302, 2014
482014
The system can't perform the operation now. Try again later.
Articles 1–20