Rudolf Lioutikov
Rudolf Lioutikov
Assitant Professor of Practice, University of Texas at Austin
Adresse e-mail validée de utexas.edu - Page d'accueil
Titre
Citée par
Citée par
Année
Probabilistic movement primitives for coordination of multiple human–robot collaborative tasks
GJ Maeda, G Neumann, M Ewerton, R Lioutikov, O Kroemer, J Peters
Autonomous Robots 41 (3), 593-612, 2017
1002017
Learning multiple collaborative tasks with a mixture of interaction primitives
M Ewerton, G Neumann, R Lioutikov, HB Amor, J Peters, G Maeda
2015 IEEE International Conference on Robotics and Automation (ICRA), 1535-1542, 2015
882015
Learning interaction for collaborative tasks with probabilistic movement primitives
G Maeda, M Ewerton, R Lioutikov, HB Amor, J Peters, G Neumann
2014 IEEE-RAS International Conference on Humanoid Robots, 527-534, 2014
752014
Sample-based informationl-theoretic stochastic optimal control
R Lioutikov, A Paraschos, J Peters, G Neumann
2014 IEEE International Conference on Robotics and Automation (ICRA), 3896-3902, 2014
582014
Model-based relative entropy stochastic search
A Abdolmaleki, R Lioutikov, JR Peters, N Lau, L Pualo Reis, G Neumann
Advances in Neural Information Processing Systems 28, 3537-3545, 2015
512015
Phase estimation for fast action recognition and trajectory generation in human–robot collaboration
G Maeda, M Ewerton, G Neumann, R Lioutikov, J Peters
The International Journal of Robotics Research 36 (13-14), 1579-1594, 2017
502017
Learning movement primitive libraries through probabilistic segmentation
R Lioutikov, G Neumann, G Maeda, J Peters
The International Journal of Robotics Research 36 (8), 879-894, 2017
372017
Guiding trajectory optimization by demonstrated distributions
T Osa, AMG Esfahani, R Stolkin, R Lioutikov, J Peters, G Neumann
IEEE Robotics and Automation Letters 2 (2), 819-826, 2017
352017
Probabilistic segmentation applied to an assembly task
R Lioutikov, G Neumann, G Maeda, J Peters
2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids …, 2015
342015
Demonstration based trajectory optimization for generalizable robot motions
D Koert, G Maeda, R Lioutikov, G Neumann, J Peters
2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids …, 2016
292016
Learning manipulation by sequencing motor primitives with a two-armed robot
R Lioutikov, O Kroemer, G Maeda, J Peters
Intelligent Autonomous Systems 13, 1601-1611, 2016
242016
Probabilistic prioritization of movement primitives
A Paraschos, R Lioutikov, J Peters, G Neumann
IEEE Robotics and Automation Letters 2 (4), 2294-2301, 2017
152017
A probabilistic framework for semi-autonomous robots based on interaction primitives with phase estimation
G Maeda, G Neumann, M Ewerton, R Lioutikov, J Peters
Robotics Research, 253-268, 2018
92018
Anticipative Interaction Primitives for Human-Robot Collaboration.
G Maeda, A Maloo, M Ewerton, R Lioutikov, J Peters
AAAI Fall Symposia, 2016
92016
Inducing probabilistic context-free grammars for the sequencing of movement primitives
R Lioutikov, G Maeda, F Veiga, K Kersting, J Peters
2018 IEEE International Conference on Robotics and Automation (ICRA), 5651-5658, 2018
52018
Low-cost sensor glove with force feedback for learning from demonstrations using probabilistic trajectory representations
E Rueckert, R Lioutikov, R Calandra, M Schmidt, P Beckerle, J Peters
arXiv preprint arXiv:1510.03253, 2015
52015
Semi-Autonomous 3rd-Hand Robot
M Lopes, J Peters, J Piater, M Toussaint, A Baisero, B Busch, O Erkent, ...
Robotics in future manufacturing scenarios 3, 2015
52015
Screwnet: Category-independent articulation model estimation from depth images using screw theory
A Jain, R Lioutikov, C Chuck, S Niekum
arXiv preprint arXiv:2008.10518, 2020
42020
Long-term visitation value for deep exploration in sparse reward reinforcement learning
S Parisi, D Tateo, M Hensel, C D'Eramo, J Peters, J Pajarinen
arXiv preprint arXiv:2001.00119, 2020
3*2020
Learning attribute grammars for movement primitive sequencing
R Lioutikov, G Maeda, F Veiga, K Kersting, J Peters
The International Journal of Robotics Research 39 (1), 21-38, 2020
32020
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20