The deal. II Library, Version 9.2 D Arndt, W Bangerth, B Blais, TC Clevenger, M Fehling, AV Grayver, ... Journal of Numerical Mathematics 1 (ahead-of-print), 2020 | 351 | 2020 |
Thermodynamically consistent physics-informed neural networks for hyperbolic systems RG Patel, I Manickam, NA Trask, MA Wood, M Lee, I Tomas, EC Cyr arXiv preprint arXiv:2012.05343, 2020 | 128 | 2020 |
Second-order invariant domain preserving approximation of the Euler equations using convex limiting JL Guermond, M Nazarov, B Popov, I Tomas SIAM Journal on Scientific Computing 40 (5), A3211-A3239, 2018 | 125 | 2018 |
Invariant domain preserving discretization-independent schemes and convex limiting for hyperbolic systems JL Guermond, B Popov, I Tomas Computer Methods in Applied Mechanics and Engineering 347, 143-175, 2019 | 86 | 2019 |
A diffuse interface model for two-phase ferrofluid flows RH Nochetto, AJ Salgado, I Tomas Computer Methods in Applied Mechanics and Engineering 309, 497-531, 2016 | 68 | 2016 |
Second-order invariant domain preserving approximation of the compressible Navier–Stokes equations JL Guermond, M Maier, B Popov, I Tomas Computer Methods in Applied Mechanics and Engineering 375, 113608, 2021 | 42 | 2021 |
The equations of ferrohydrodynamics: modeling and numerical methods RH Nochetto, AJ Salgado, I Tomas Mathematical Models and Methods in Applied Sciences 26 (13), 2393-2449, 2016 | 37 | 2016 |
The Micropolar Navier–Stokes equations: A priori error analysis RH Nochetto, AJ Salgado, I Tomas Mathematical Models and Methods in Applied Sciences 24 (07), 1237-1264, 2014 | 24 | 2014 |
A positivity preserving strategy for entropy stable discontinuous Galerkin discretizations of the compressible Euler and Navier-Stokes equations Y Lin, J Chan, I Tomas arXiv preprint arXiv:2201.11816, 2022 | 22 | 2022 |
Matrix-free subcell residual distribution for Bernstein finite elements: Monolithic limiting H Hajduk, D Kuzmin, T Kolev, V Tomov, I Tomas, JN Shadid Computers & Fluids 200, 104451, 2020 | 18 | 2020 |
On the implementation of a robust and efficient finite element-based parallel solver for the compressible Navier-Stokes equations JL Guermond, M Kronbichler, M Maier, B Popov, I Tomas arXiv preprint arXiv:2106.02159, 2021 | 15 | 2021 |
Study of Magnetoconvection Impact on a Coil Cooling by Ferrofluid with a Spectral/Finite Element Method C Nore, I Tomas, X Mininger, JL Guermond | 10* | 2018 |
Study of Magnetoconvection Impact on a Coil Cooling by Ferrofluid with a Spectral/Finite-Element Method R Zanella, C Nore, F Bouillault, L Cappanera, I Tomas, X Mininger, ... IEEE Transactions on Magnetics 54 (3), 1-4, 2017 | 10 | 2017 |
Accurate, efficient and robust explicit and implicit integration schemes for the Arruda-Boyce viscoplastic model I Tomas, AP Cisilino, PM Frontini Mecánica Computacional, 1003-1042, 2008 | 9 | 2008 |
Structure-preserving finite-element schemes for the Euler-Poisson equations M Maier, I Tomas 2022 Fall Central Sectional Meeting, 2022 | 4 | 2022 |
Diagonally implicit Runge–Kutta schemes: Discrete energy-balance laws and compactness properties AJ Salgado, I Tomas Journal of Numerical Mathematics 31 (4), 313-341, 2023 | 2 | 2023 |
Structure preserving numerical methods for the ideal compressible MHD system TA Dao, M Nazarov, I Tomas arXiv preprint arXiv:2310.18467, 2023 | 2 | 2023 |
Final report of activities for the LDRD-CIS project# 226834 titled:? Asymptotic preserving methods for fluid electron-fluid models in the large magnetic field limit with … I Tomas, J Shadid, M Maier, A Salgado Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2022 | 2* | 2022 |
Final report of activities for the LDRD-express project# 223796 titled:? Fluid models of charged species transport: numerical methods with mathematically guaranteed properties … I Tomas, J Shadid, M Crockatt, R Pawlowski, M Maier, JL Guermond Sandia National Lab.(SNL-NM), Albuquerque, NM (United States); Sandia …, 2021 | 1 | 2021 |
The Suliciu approximate Riemann solver is not invariant domain preserving JL Guermond, C Klingenberg, B Popov, I Tomas Journal of Hyperbolic Differential Equations 16 (01), 59-72, 2019 | 1 | 2019 |