Provable filter pruning for efficient neural networks L Liebenwein*, C Baykal*, H Lang, D Feldman, D Rus arXiv preprint arXiv:1911.07412, 2019 | 64 | 2019 |
Data-dependent coresets for compressing neural networks with applications to generalization bounds C Baykal*, L Liebenwein*, I Gilitschenski, D Feldman, D Rus arXiv preprint arXiv:1804.05345, 2018 | 57 | 2018 |
Interactive-rate motion planning for concentric tube robots LG Torres, C Baykal, R Alterovitz 2014 IEEE International Conference on Robotics and Automation (ICRA), 1915-1921, 2014 | 49 | 2014 |
Optimizing design parameters for sets of concentric tube robots using sampling-based motion planning C Baykal, LG Torres, R Alterovitz 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2015 | 29 | 2015 |
Asymptotically Optimal Design of Piecewise Cylindrical Robots using Motion Planning. C Baykal, R Alterovitz Robotics: Science and Systems 2017, 2017 | 23 | 2017 |
Lost in pruning: The effects of pruning neural networks beyond test accuracy L Liebenwein, C Baykal, B Carter, D Gifford, D Rus Proceedings of Machine Learning and Systems 3, 93-138, 2021 | 19 | 2021 |
Asymptotically optimal kinematic design of robots using motion planning C Baykal, C Bowen, R Alterovitz Autonomous robots 43 (2), 345-357, 2019 | 17 | 2019 |
Sampling-based approximation algorithms for reachability analysis with provable guarantees L Liebenwein*, C Baykal*, I Gilitschenski, S Karaman, D Rus | 17 | 2018 |
On coresets for support vector machines M Tukan*, C Baykal*, D Feldman, D Rus International Conference on Theory and Applications of Models of Computation …, 2020 | 15 | 2020 |
SiPPing Neural Networks: Sensitivity-informed Provable Pruning of Neural Networks C Baykal*, L Liebenwein*, I Gilitschenski, D Feldman, D Rus arXiv preprint arXiv:1910.05422, 2019 | 14 | 2019 |
Participatory route planning D Wilkie, C Baykal, MC Lin Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances …, 2014 | 14 | 2014 |
Resilient multi-agent consensus using wi-fi signals S Gil, C Baykal, D Rus IEEE control systems letters 3 (1), 126-131, 2018 | 12 | 2018 |
Kinematic design optimization of a parallel surgical robot to maximize anatomical visibility via motion planning A Kuntz, C Bowen, C Baykal, AW Mahoney, PL Anderson, F Maldonado, ... 2018 IEEE International Conference on Robotics and Automation (ICRA), 926-933, 2018 | 9 | 2018 |
Persistent surveillance of events with unknown, time-varying statistics C Baykal, G Rosman, S Claici, D Rus 2017 IEEE International Conference on Robotics and Automation (ICRA), 2682-2689, 2017 | 6 | 2017 |
Training support vector machines using coresets C Baykal, L Liebenwein, W Schwarting arXiv preprint arXiv:1708.03835, 2017 | 5 | 2017 |
Deterministic Coresets for Stochastic Matrices with Applications to Scalable Sparse PageRank H Lang*, C Baykal*, NA Samra, T Tannous, D Feldman, D Rus International Conference on Theory and Applications of Models of Computation …, 2019 | 3 | 2019 |
Detection of AQM on Paths using Machine Learning Methods C Baykal, W Schwarting, A Wallar arXiv preprint arXiv:1707.02386, 2017 | 3 | 2017 |
Persistent Surveillance of Events with Unknown Rate Statistics C Baykal, G Rosman, K Kotowick, M Donahue, D Rus | 3* | 2016 |
Sensitivity-Informed Provable Pruning of Neural Networks C Baykal, L Liebenwein, I Gilitschenski, D Feldman, D Rus SIAM Journal on Mathematics of Data Science 4 (1), 26-45, 2022 | 2 | 2022 |
Graph Belief Propagation Networks J Jia, C Baykal, VK Potluru, AR Benson arXiv preprint arXiv:2106.03033, 2021 | 2 | 2021 |