marialisa nigro
marialisa nigro
Bestätigte E-Mail-Adresse bei uniroma3.it
Titel
Zitiert von
Zitiert von
Jahr
A gradient approximation approach for adjusting temporal origin–destination matrices
E Cipriani, M Florian, M Mahut, M Nigro
Transportation Research Part C: Emerging Technologies 19 (2), 270-282, 2011
1262011
Towards a generic benchmarking platform for origin–destination flows estimation/updating algorithms: Design, demonstration and validation
C Antoniou, J Barceló, M Breen, M Bullejos, J Casas, E Cipriani, B Ciuffo, ...
Transportation Research Part C: Emerging Technologies 66, 79-98, 2016
812016
An adaptive bi-level gradient procedure for the estimation of dynamic traffic demand
G Cantelmo, E Cipriani, A Gemma, M Nigro
IEEE Transactions on Intelligent Transportation Systems 15 (3), 1348-1361, 2014
532014
Sustainable urban freight transport adopting public transport-based crowdshipping for B2C deliveries
V Gatta, E Marcucci, M Nigro, S Serafini
European Transport Research Review 11 (1), 1-14, 2019
492019
Public transport-based crowdshipping for sustainable city logistics: Assessing economic and environmental impacts
V Gatta, E Marcucci, M Nigro, SM Patella, S Serafini
Sustainability 11 (1), 145, 2019
482019
Walkability indicators for pedestrian-friendly design
S Gori, M Nigro, M Petrelli
Transportation Research Record 2464 (1), 38-45, 2014
452014
Sustainable crowdshipping using public transport: A case study evaluation in Rome
S Serafini, M Nigro, V Gatta, E Marcucci
Transportation Research Procedia 30, 101-110, 2018
432018
Dynamic demand estimation and prediction for traffic urban networks adopting new data sources
S Carrese, E Cipriani, L Mannini, M Nigro
Transportation Research Part C: Emerging Technologies 81, 83-98, 2017
432017
The impact of land use characteristics for sustainable mobility: the case study of Rome
S Gori, M Nigro, M Petrelli
European transport research review 4 (3), 153-166, 2012
402012
Assessing the value of information for retail distribution of perishable goods
M Flamini, M Nigro, D Pacciarelli
European Transport Research Review 3 (2), 103-112, 2011
272011
Exploiting floating car data for time-dependent origin–destination matrices estimation
M Nigro, E Cipriani, A del Giudice
Journal of Intelligent Transportation Systems 22 (2), 159-174, 2018
262018
Congestion pricing policies: Design and assessment for the city of Rome, Italy
E Cipriani, L Mannini, B Montemarani, M Nigro, M Petrelli
Transport Policy 80, 127-135, 2019
252019
Effectiveness of link and path information on simultaneous adjustment of dynamic OD demand matrix
E Cipriani, M Nigro, G Fusco, C Colombaroni
European Transport Research Review 6 (2), 139-148, 2014
252014
Investigating the efficiency of a gradient approximation approach for the solution of dynamic demand estimation problems
E Cipriani, M Florian, M Mahut, M Nigro
Chapters, 2010
252010
Two-step approach for correction of seed matrix in dynamic demand estimation
G Cantelmo, F Viti, CMJ Tampère, E Cipriani, M Nigro
Transportation Research Record 2466 (1), 125-133, 2014
242014
Two-step approach for correction of seed matrix in dynamic demand estimation
G Cantelmo, F Viti, CMJ Tampère, E Cipriani, M Nigro
Transportation Research Record 2466 (1), 125-133, 2014
242014
A preliminary study of the potential impact of autonomous vehicles on residential location in Rome
S Carrese, M Nigro, SM Patella, E Toniolo
Research in transportation economics 75, 55-61, 2019
232019
The impact of electric mobility scenarios in large urban areas: The rome case study
C Liberto, G Valenti, S Orchi, M Lelli, M Nigro, M Ferrara
IEEE Transactions on Intelligent Transportation Systems 19 (11), 3540-3549, 2018
232018
An innovative car sharing electric vehicle system: An Italian experience
S Carrese, T Giacchetti, M Nigro, SM Patella
WIT Trans. Built Environ 176, 245-252, 2017
202017
Public transport-based crowdshipping for sustainable city logistics: Assessing economic and environmental impacts
V Gatta, E Marcucci, M Nigro, SM Patella, S Serafini
Sustainability 11 (1), 1-14, 2018
192018
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20