Follow
Francesco Pinto
Francesco Pinto
DPhil Student, University of Oxford
Verified email at eng.ox.ac.uk
Title
Cited by
Cited by
Year
RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and Out Distribution Robustness
F Pinto, H Yang, SN Lim, PHS Torr, PK Dokania
NeurIPS 2022, 2022
74*2022
An Impartial Take to the CNN vs Transformer Robustness Contest
F Pinto, PHS Torr, PK Dokania
ECCV 2022, 2022
57*2022
Sample-dependent Adaptive Temperature Scaling for Improved Calibration
T Joy, F Pinto, SN Lim, PHS Torr, PK Dokania
ICML 2022 Workshop on Distribution-Free Uncertainty Quantification (DFUQ), 2022
272022
Towards automated satellite conjunction management with Bayesian deep learning
F Pinto, G Acciarini, S Metz, S Boufelja, S Kaczmarek, K Merz, ...
AI4EarthScience Workshop at NeurIPS 2020, 2020
212020
Not Just Pretty Pictures: Text-to-Image Generators Enable Interpretable Interventions for Robust Representations
J Yuan, F Pinto, A Davies, A Gupta, P Torr
arXiv preprint arXiv:2212.11237v1, 2022
192022
Kessler: A machine learning library for spacecraft collision avoidance
G Acciarini, F Pinto, F Letizia, JA Martinez-Heras, K Merz, CP BRIDGES, ...
European Conference on Space Debris, 2021
162021
Spacecraft collision risk assessment with probabilistic programming
G Acciarini, F Pinto, S Metz, S Boufelja, S Kaczmarek, K Merz, ...
ML4PhysicalSciences Workshop at NeurIPS 2020, 2020
162020
PILLAR: How to make semi-private learning more effective
F Pinto, Y Hu, F Yang, A Sanyal
SatML 2024, 2023
92023
SECI-GAN: Semantic and Edge Completion for dynamic objects removal
F Pinto, A Romanoni, M Matteucci, PHS Torr
2020 25th International Conference on Pattern Recognition (ICPR), 10441-10448, 2021
82021
K Dokania, P.(2022). An impartial take to the CNN vs transformer robustness contest
F Pinto, PHS Torr
European conference on computer vision, 466-480, 0
6
Certified calibration: Bounding worst-case calibration under adversarial attacks
C Emde, F Pinto, T Lukasiewicz, P Torr, A Bibi
The Second Workshop on New Frontiers in Adversarial Machine Learning, 2023
22023
Strong Copyright Protection for Language Models via Adaptive Model Fusion
J Abad, K Donhauser, F Pinto, F Yang
arXiv preprint arXiv:2407.20105, 2024
12024
Towards Certification of Uncertainty Calibration under Adversarial Attacks
C Emde, F Pinto, T Lukasiewicz, PHS Torr, A Bibi
arXiv preprint arXiv:2405.13922, 2024
2024
As Firm As Their Foundations: Can open-sourced foundation models be used to create adversarial examples for downstream tasks?
A Hu, J Gu, F Pinto, K Kamnitsas, P Torr
arXiv preprint arXiv:2403.12693, 2024
2024
Extracting Training Data From Document-Based VQA Models
F Pinto, N Rauschmayr, F Tramèr, P Torr, F Tombari
Forty-first International Conference on Machine Learning, 2024
2024
Semi-private learning via low dimensional structures
Y Hu, F Pinto, A Sanyal, F Yang
The system can't perform the operation now. Try again later.
Articles 1–16