Suivre
Chris Williams
Chris Williams
Professor of Machine Learning, University of Edinburgh
Adresse e-mail validée de inf.ed.ac.uk
Titre
Citée par
Citée par
Année
Gaussian processes for machine learning
CE Rasmussen, CKI Williams
MIT Press, 2006
29449*2006
The PASCAL Visual Object Classes (VOC) challenge
M Everingham, L Van Gool, CKI Williams, J Winn, A Zisserman
Int J Computer Vision 88 (2), 303-338, 2010
214822010
The Pascal Visual Object Classes Challenge: A Retrospective
M Everingham, SMA Eslami, L Van Gool, CKI Williams, J Winn, ...
International journal of computer vision 111, 98-136, 2015
57222015
Using the Nyström method to speed up kernel machines
C Williams, M Seeger
Advances in neural information processing systems 13, 2000
28142000
GTM: The generative topographic mapping
CM Bishop, M Svensén, CKI Williams
Neural computation 10 (1), 215-234, 1998
18431998
Gaussian processes for regression
C Williams, C Rasmussen
Advances in neural information processing systems 8, 1995
15811995
Multi-task Gaussian process prediction
EV Bonilla, K Chai, C Williams
Advances in neural information processing systems 20, 2007
12472007
Bayesian classification with Gaussian processes
CKI Williams, D Barber
IEEE Transactions on pattern analysis and machine intelligence 20 (12), 1342 …, 1998
9721998
Prediction with Gaussian processes: From linear regression to linear prediction and beyond
CKI Williams
Learning in graphical models, 599-621, 1998
9101998
Fast forward selection to speed up sparse Gaussian process regression
MW Seeger, CKI Williams, ND Lawrence
International Workshop on Artificial Intelligence and Statistics, 254-261, 2003
5952003
Using machine learning to focus iterative optimization
F Agakov, E Bonilla, J Cavazos, B Franke, G Fursin, MFP O'Boyle, ...
International Symposium on Code Generation and Optimization (CGO'06), 11 pp.-305, 2006
5012006
Regression with input-dependent noise: A Gaussian process treatment
P Goldberg, C Williams, C Bishop
Advances in neural information processing systems 10, 1997
3971997
The pascal visual object classes challenge 2007 (voc 2007) results (2007)
M Everingham, L Van Gool, CKI Williams, J Winn, A Zisserman
3712008
Computing with infinite networks
C Williams
Advances in neural information processing systems 9, 1996
3541996
A framework for the quantitative evaluation of disentangled representations
C Eastwood, CKI Williams
International Conference on Learning Representations, 2018
3512018
The 2005 pascal visual object classes challenge
M Everingham, A Zisserman, CKI Williams, L Van Gool, M Allan, ...
Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual …, 2006
3492006
On a connection between kernel PCA and metric multidimensional scaling
C Williams
Advances in neural information processing systems 13, 2000
3292000
Dataset issues in object recognition
J Ponce, TL Berg, M Everingham, DA Forsyth, M Hebert, S Lazebnik, ...
Toward category-level object recognition, 29-48, 2006
3052006
Milepost gcc: Machine learning enabled self-tuning compiler
G Fursin, Y Kashnikov, AW Memon, Z Chamski, O Temam, M Namolaru, ...
International journal of parallel programming 39, 296-327, 2011
3032011
The PASCAL visual object classes challenge 2009 (VOC2009) results
M Everingham
http://www. pascal-network. org/challenges/VOC/voc2009/workshop/index. html, 2007
273*2007
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20