Suivre
Chris Williams
Chris Williams
Professor of Machine Learning, University of Edinburgh
Adresse e-mail validée de inf.ed.ac.uk
Titre
Citée par
Citée par
Année
The PASCAL Visual Object Classes (VOC) challenge
M Everingham, L Van Gool, CKI Williams, J Winn, A Zisserman
Int J Computer Vision 88 (2), 303-338, 2010
248102010
The Pascal Visual Object Classes Challenge: A Retrospective
M Everingham, SMA Eslami, L Van Gool, CKI Williams, J Winn, ...
International journal of computer vision 111, 98-136, 2015
112482015
Gaussian Processes for Machine Learning
CE Rasmussen, CKI Williams
MIT Press, 2006
6701*2006
Using the Nyström method to speed up kernel machines
C Williams, M Seeger
Advances in neural information processing systems 13, 2000
31792000
Gaussian processes for regression
C Williams, C Rasmussen
Advances in neural information processing systems 8, 1995
20711995
GTM: The generative topographic mapping
CM Bishop, M Svensén, CKI Williams
Neural computation 10 (1), 215-234, 1998
19531998
Multi-task Gaussian process prediction
EV Bonilla, K Chai, C Williams
Advances in neural information processing systems 20, 2007
15732007
Bayesian classification with Gaussian processes
CKI Williams, D Barber
IEEE Transactions on pattern analysis and machine intelligence 20 (12), 1342 …, 1998
10921998
Prediction with Gaussian processes: From linear regression to linear prediction and beyond
CKI Williams
Learning in graphical models, 599-621, 1998
10131998
Advances in neural information processing systems
CKI Williams, CE Rasmussen
Nobili F, Mazzei D, Dessi B, Morbelli S, Brugnolo A, Barbieri P, 18131821, 1996
8801996
Fast forward selection to speed up sparse Gaussian process regression
MW Seeger, CKI Williams, ND Lawrence
International Workshop on Artificial Intelligence and Statistics, 254-261, 2003
6762003
Using machine learning to focus iterative optimization
F Agakov, E Bonilla, J Cavazos, B Franke, G Fursin, MFP O'Boyle, ...
International Symposium on Code Generation and Optimization (CGO'06), 11 pp.-305, 2006
5372006
A framework for the quantitative evaluation of disentangled representations
C Eastwood, CKI Williams
6th International Conference on Learning Representations, 2018
5282018
Computing with infinite networks
C Williams
Advances in neural information processing systems 9, 1996
4931996
Regression with input-dependent noise: A Gaussian process treatment
P Goldberg, C Williams, C Bishop
Advances in neural information processing systems 10, 1997
4761997
On a connection between kernel PCA and metric multidimensional scaling
C Williams
Advances in neural information processing systems 13, 2000
3552000
Milepost gcc: Machine learning enabled self-tuning compiler
G Fursin, Y Kashnikov, AW Memon, Z Chamski, O Temam, M Namolaru, ...
International journal of parallel programming 39, 296-327, 2011
3432011
Dataset issues in object recognition
J Ponce, TL Berg, M Everingham, DA Forsyth, M Hebert, S Lazebnik, ...
Toward category-level object recognition, 29-48, 2006
3192006
Covariance functions
CE Rasmussen, CKI Williams
MIT press, 2005
3062005
Developments of the generative topographic mapping
CM Bishop, M Svensén, CKI Williams
Neurocomputing 21 (1-3), 203-224, 1998
2831998
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20