Chris Williams
Chris Williams
Professor of Machine Learning, University of Edinburgh
Adresse e-mail validée de inf.ed.ac.uk
Titre
Citée par
Citée par
Année
Gaussian processes for machine learning
CE Rasmussen, CKI Williams
MIT Press, 2006
210712006
Gaussian process for machine learning
CE Rasmussen, CKI Williams
MIT press, 2006
197092006
The PASCAL Visual Object Classes (VOC) challenge
M Everingham, L Van Gool, CKI Williams, J Winn, A Zisserman
Int J Computer Vision 88 (2), 303-338, 2010
95592010
The pascal visual object classes challenge: A retrospective
M Everingham, SMA Eslami, L Van Gool, CKI Williams, J Winn, ...
International journal of computer vision 111 (1), 98-136, 2015
28562015
The PASCAL visual object classes challenge 2007 (VOC2007) results
M Everingham, L Van Gool, CKI Williams, J Winn, A Zisserman
25152007
Using the Nyström method to speed up kernel machines
C Williams, M Seeger
Advances in neural information processing systems 13, 682-688, 2000
21982000
GTM: The generative topographic mapping
CM Bishop, M Svensén, CKI Williams
Neural computation 10 (1), 215-234, 1998
16791998
Gaussian processes for regression
CKI Williams, CE Rasmussen
Advances in neural information processing systems, 514-520, 1996
11941996
Multi-task Gaussian process prediction
EV Bonilla, K Chai, C Williams
Advances in neural information processing systems 20, 153-160, 2007
8712007
Bayesian classification with Gaussian processes
CKI Williams, D Barber
IEEE Transactions on Pattern Analysis and Machine Intelligence 20 (12), 1342 …, 1998
8211998
Prediction with Gaussian processes: From linear regression to linear prediction and beyond
CKI Williams
Learning in graphical models, 599-621, 1998
7321998
Fast forward selection to speed up sparse Gaussian process regression
M Seeger, C Williams, N Lawrence
Artificial Intelligence and Statistics 9, 2003
4642003
Using machine learning to focus iterative optimization
F Agakov, E Bonilla, J Cavazos, B Franke, G Fursin, MFP O'Boyle, ...
International Symposium on Code Generation and Optimization (CGO'06), 11 pp.-305, 2006
4482006
The 2005 pascal visual object classes challenge
M Everingham, A Zisserman, CKI Williams, L Van Gool, M Allan, ...
Machine Learning Challenges Workshop, 117-176, 2005
3932005
Regression with input-dependent noise: A Gaussian process treatment
PW Goldberg, CKI Williams, CM Bishop
Advances in neural information processing systems, 493-499, 1998
3161998
Resin infusion under flexible tooling (RIFT): a review
C Williams, J Summerscales, S Grove
Composites Part A: Applied Science and Manufacturing 27 (7), 517-524, 1996
2721996
Dataset issues in object recognition
J Ponce, TL Berg, M Everingham, DA Forsyth, M Hebert, S Lazebnik, ...
Toward category-level object recognition, 29-48, 2006
2572006
Developments of the generative topographic mapping
CM Bishop, M Svensén, CKI Williams
Neurocomputing 21 (1-3), 203-224, 1998
2291998
GTM: A principled alternative to the self-organizing map
C Bishop, M Svensén, C Williams
Advances in neural information processing systems 9, 354-360, 1996
2241996
Using generative models for handwritten digit recognition
M Revow, CKI Williams, GE Hinton
IEEE transactions on pattern analysis and machine intelligence 18 (6), 592-606, 1996
2211996
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20