The Pascal Visual Object Classes Challenge–a Retrospective M Everingham, SMA Eslami, L Van Gool, CKI Williams, J Winn, ... IJCV, 2014 | 3231 | 2014 |
Emergence of locomotion behaviours in rich environments N Heess, D TB, S Sriram, J Lemmon, J Merel, G Wayne, Y Tassa, T Erez, ... arXiv preprint arXiv:1707.02286, 2017 | 493 | 2017 |
Unsupervised learning of 3d structure from images DJ Rezende, SM Eslami, S Mohamed, P Battaglia, M Jaderberg, N Heess arXiv preprint arXiv:1607.00662, 2016 | 295 | 2016 |
Neural scene representation and rendering SMA Eslami, DJ Rezende, F Besse, F Viola, AS Morcos, M Garnelo, ... Science 360 (6394), 1204-1210, 2018 | 280 | 2018 |
Attend, infer, repeat: Fast scene understanding with generative models SMA Eslami, N Heess, T Weber, Y Tassa, D Szepesvari, GE Hinton Advances in Neural Information Processing Systems, 3225-3233, 2016 | 280 | 2016 |
Data-efficient image recognition with contrastive predictive coding OJ Hénaff, A Srinivas, J De Fauw, A Razavi, C Doersch, SMA Eslami, ... International Conference on Machine Learning, 4182-4192, 2020 | 263 | 2020 |
The Shape Boltzmann Machine: a Strong Model of Object Shape SMA Eslami, N Heess, CKI Williams, J Winn International Journal of Computer Vision 107 (2), 155-176, 2014 | 230 | 2014 |
Conditional neural processes M Garnelo, D Rosenbaum, C Maddison, T Ramalho, D Saxton, ... International Conference on Machine Learning, 1704-1713, 2018 | 189 | 2018 |
Neural processes M Garnelo, J Schwarz, D Rosenbaum, F Viola, DJ Rezende, SM Eslami, ... arXiv preprint arXiv:1807.01622, 2018 | 164 | 2018 |
Machine theory of mind N Rabinowitz, F Perbet, F Song, C Zhang, SMA Eslami, M Botvinick International conference on machine learning, 4218-4227, 2018 | 161 | 2018 |
A probabilistic u-net for segmentation of ambiguous images SAA Kohl, B Romera-Paredes, C Meyer, J De Fauw, JR Ledsam, ... arXiv preprint arXiv:1806.05034, 2018 | 153 | 2018 |
Synthesizing programs for images using reinforced adversarial learning Y Ganin, T Kulkarni, I Babuschkin, SMA Eslami, O Vinyals International Conference on Machine Learning, 1666-1675, 2018 | 105 | 2018 |
Attentive neural processes H Kim, A Mnih, J Schwarz, M Garnelo, A Eslami, D Rosenbaum, O Vinyals, ... arXiv preprint arXiv:1901.05761, 2019 | 92 | 2019 |
A Generative Model for Parts-based Object Segmentation SMA Eslami, CKI Williams Neural Information Processing Systems, 2012 | 70 | 2012 |
Learning and querying fast generative models for reinforcement learning L Buesing, T Weber, S Racaniere, SM Eslami, D Rezende, DP Reichert, ... arXiv preprint arXiv:1802.03006, 2018 | 58 | 2018 |
Few-shot autoregressive density estimation: Towards learning to learn distributions S Reed, Y Chen, T Paine, A Oord, SM Eslami, D Rezende, O Vinyals, ... arXiv preprint arXiv:1710.10304, 2017 | 52 | 2017 |
Kickstarting deep reinforcement learning S Schmitt, JJ Hudson, A Zidek, S Osindero, C Doersch, WM Czarnecki, ... arXiv preprint arXiv:1803.03835, 2018 | 47 | 2018 |
Kernel-based just-in-time learning for passing expectation propagation messages W Jitkrittum, A Gretton, N Heess, SM Eslami, B Lakshminarayanan, ... arXiv preprint arXiv:1503.02551, 2015 | 31 | 2015 |
Van Gool, L M Everingham Williams, CKI, Winn, J. and Zisserman, A. The PASCAL Visual Object Classes …, 2012 | 25 | 2012 |
Consistent generative query networks A Kumar, SM Eslami, DJ Rezende, M Garnelo, F Viola, E Lockhart, ... arXiv preprint arXiv:1807.02033, 2018 | 21 | 2018 |