Sepp Hochreiter
Sepp Hochreiter
Institute for Machine Learning, Johannes Kepler University Linz
Adresse e-mail validée de ml.jku.at - Page d'accueil
Titre
Citée par
Citée par
Année
Long short-term memory
S Hochreiter, J Schmidhuber
Neural computation 9 (8), 1735-1780, 1997
452371997
Fast and accurate deep network learning by exponential linear units (elus)
DA Clevert, T Unterthiner, S Hochreiter
arXiv preprint arXiv:1511.07289, 2015
32182015
Gans trained by a two time-scale update rule converge to a local nash equilibrium
M Heusel, H Ramsauer, T Unterthiner, B Nessler, S Hochreiter
arXiv preprint arXiv:1706.08500, 2017
23492017
Gradient flow in recurrent nets: the difficulty of learning long-term dependencies
S Hochreiter, Y Bengio, P Frasconi, J Schmidhuber
A field guide to dynamical recurrent neural networks. IEEE Press, 2001
1814*2001
The vanishing gradient problem during learning recurrent neural nets and problem solutions
S Hochreiter
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE BASED SYSTEMS 6 …, 1998
14281998
Self-normalizing neural networks
G Klambauer, T Unterthiner, A Mayr, S Hochreiter
arXiv preprint arXiv:1706.02515, 2017
13532017
Untersuchungen zu dynamischen neuronalen Netzen
S Hochreiter
Master's thesis, Institut fur Informatik, Technische Universitat, Munchen, 1991
8111991
A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium
SEQC Consortium
Nature biotechnology 32 (9), 903, 2014
5832014
LSTM can solve hard long time lag problems
S Hochreiter, J Schmidhuber
Advances in Neural Information Processing Systems 9: Proceedings of The 1996 …, 1997
5421997
Flat minima
S Hochreiter, J Schmidhuber
Neural Computation 9 (1), 1-42, 1997
3971997
DeepTox: toxicity prediction using deep learning
A Mayr, G Klambauer, T Unterthiner, S Hochreiter
Frontiers in Environmental Science 3, 80, 2016
3892016
Learning to learn using gradient descent
S Hochreiter, A Younger, P Conwell
Artificial Neural Networks—ICANN 2001, 87-94, 2001
3832001
cn. MOPS: mixture of Poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate
G Klambauer, K Schwarzbauer, A Mayr, DA Clevert, A Mitterecker, ...
Nucleic Acids Research 40 (9), e69-e69, 2012
3332012
APCluster: an R package for affinity propagation clustering
U Bodenhofer, A Kothmeier, S Hochreiter
Bioinformatics 27 (17), 2463-2464, 2011
3202011
FABIA: factor analysis for bicluster acquisition
S Hochreiter, U Bodenhofer, M Heusel, A Mayr, A Mitterecker, A Kasim, ...
Bioinformatics 26 (12), 1520-1527, 2010
2992010
A new summarization method for Affymetrix probe level data
S Hochreiter, DA Clevert, K Obermayer
Bioinformatics 22 (8), 943-949, 2006
2942006
GANs Trained by a Two Time-Scale Update Rule Converge to a Nash Equilibrium.
M Heusel, H Ramsauer, T Unterthiner, B Nessler, G Klambauer, ...
2602017
msa: an R package for multiple sequence alignment
U Bodenhofer, E Bonatesta, C Horejš-Kainrath, S Hochreiter
Bioinformatics 31 (24), 3997-3999, 2015
1942015
Reinforcement driven information acquisition in non-deterministic environments
J Storck, S Hochreiter, J Schmidhuber
Proceedings of the international conference on artificial neural networks …, 1995
1781995
Large-scale comparison of machine learning methods for drug target prediction on ChEMBL
A Mayr, G Klambauer, T Unterthiner, M Steijaert, JK Wegner, ...
Chemical science 9 (24), 5441-5451, 2018
1752018
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20