Follow
Stefan Gugler
Stefan Gugler
Verified email at phys.chem.ethz.ch - Homepage
Title
Cited by
Cited by
Year
Strategies and software for machine learning accelerated discovery in transition metal chemistry
A Nandy, C Duan, JP Janet, S Gugler, HJ Kulik
Industrial & Engineering Chemistry Research 57 (42), 13973-13986, 2018
1052018
Gaussian process-based refinement of dispersion corrections
J Proppe, S Gugler, M Reiher
Journal of Chemical Theory and Computation 15 (11), 6046-6060, 2019
352019
Enumeration of de novo inorganic complexes for chemical discovery and machine learning
S Gugler, JP Janet, HJ Kulik
Molecular Systems Design & Engineering 5 (1), 139-152, 2020
222020
Quantum chemical roots of machine-learning molecular similarity descriptors
S Gugler, M Reiher
arXiv preprint arXiv:2207.03599, 2022
2022
qcscine/puffin: Release 1.0. 0
M Bensberg, C Brunken, KS Csizi, SA Grimmel, S Gugler, JG Sobez, ...
ETH Zurich, 2022
2022
qcscine/utilities: Release 5.0. 0
A Baiardi, F Bosia, C Brunken, KS Csizi, SA Grimmel, S Gugler, MP Haag, ...
Zenodo, 2022
2022
Accelerating Inorganic Discovery with Machine Learning and Automation
H Kulik, JP Janet, A Nandy, C Duan, S Gugler
2018 AIChE Annual Meeting, 2018
2018
Strategies and Software for Accelerating Inorganic Molecular Design
H Kulik, JP Janet, C Duan, A Nandy, S Gugler
2018 AIChE Annual Meeting, 2018
2018
Enumerating the inorganic universe of small complexes for machine learning
S Gugler, JP Janet, H Kulik
ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY 256, 2018
2018
Gaussian Process-Based Refinement of Dispersion Corrections
S Gugler, J Proppe, M Reiher
The system can't perform the operation now. Try again later.
Articles 1–10