Follow
Moritz Flaschel
Moritz Flaschel
Smart Steel Technologies GmbH
No verified email
Title
Cited by
Cited by
Year
Unsupervised discovery of interpretable hyperelastic constitutive laws
M Flaschel, S Kumar, L De Lorenzis
Computer Methods in Applied Mechanics and Engineering 381, 113852, 2021
1242021
NN-EUCLID: Deep-learning hyperelasticity without stress data
P Thakolkaran, A Joshi, Y Zheng, M Flaschel, L De Lorenzis, S Kumar
Journal of the Mechanics and Physics of Solids 169, 105076, 2022
652022
Discovering plasticity models without stress data
M Flaschel, S Kumar, L De Lorenzis
npj Computational Materials 8 (1), 91, 2022
50*2022
Automated discovery of generalized standard material models with EUCLID
M Flaschel, S Kumar, L De Lorenzis
Computer Methods in Applied Mechanics and Engineering 405, 115867, 2023
492023
Bayesian-EUCLID: Discovering hyperelastic material laws with uncertainties
A Joshi, P Thakolkaran, Y Zheng, M Escande, M Flaschel, L De Lorenzis, ...
Computer Methods in Applied Mechanics and Engineering 398, 115225, 2022
342022
Automated identification of linear viscoelastic constitutive laws with EUCLID
E Marino, M Flaschel, S Kumar, L De Lorenzis
Mechanics of Materials 181, 104643, 2023
242023
Automated discovery of interpretable hyperelastic material models for human brain tissue with EUCLID
M Flaschel, H Yu, N Reiter, J Hinrichsen, S Budday, P Steinmann, ...
Journal of the Mechanics and Physics of Solids 180, 105404, 2023
72023
Single-test evaluation of directional elastic properties of anisotropic structured materials
J Boddapati, M Flaschel, S Kumar, L De Lorenzis, C Daraio
Journal of the Mechanics and Physics of Solids 181, 105471, 2023
62023
Automated Discovery of Material Models in Continuum Solid Mechanics
M Flaschel
ETH Zurich, 2023
62023
Supplementary software for “Discovering plasticity models without stress data"
M Flaschel, S Kumar, L De Lorenzis
ETH Lib, 2022
52022
FEM Data - Discovering plasticity models without stress data
M Flaschel, S Kumar, L De Lorenzis
ETH Zurich, 2022
42022
FEM Data - Unsupervised discovery of interpretable hyperelastic constitutive laws
M Flaschel, S Kumar, L De Lorenzis
ETH Zurich, 2021
42021
Reduced and all-at-once approaches for model calibration and discovery in computational solid mechanics
U Römer, S Hartmann, JA Tröger, D Anton, H Wessels, M Flaschel, ...
arXiv preprint arXiv:2404.16980, 2024
32024
Calibration of material parameters based on 180° and 90° ferroelectric domain wall properties in Ginzburg–Landau–Devonshire phase field models
M Flaschel, L De Lorenzis
Archive of Applied Mechanics 90 (12), 2755–2774, 2020
32020
A review on data-driven constitutive laws for solids
JN Fuhg, GA Padmanabha, N Bouklas, B Bahmani, WC Sun, NN Vlassis, ...
arXiv preprint arXiv:2405.03658, 2024
12024
FEM Data-Automated discovery of generalized standard material models with EUCLID
M Flaschel, S Kumar, L De Lorenzis
ETH Zurich, 2022
12022
Data-driven methods for quantitative imaging
G Dong, M Flaschel, M Hintermüller, K Papafitsoros, C Sirotenko, ...
arXiv preprint arXiv:2404.07886, 2024
2024
Discovering non-associated pressure-sensitive plasticity models with EUCLID
H Xu, M Flaschel, L De Lorenzis
2024
The system can't perform the operation now. Try again later.
Articles 1–18