Improved techniques for training gans T Salimans, I Goodfellow, W Zaremba, V Cheung, A Radford, X Chen arXiv preprint arXiv:1606.03498, 2016 | 4611 | 2016 |
Improving language understanding by generative pre-training A Radford, K Narasimhan, T Salimans, I Sutskever | 2049* | 2018 |
Weight normalization: A simple reparameterization to accelerate training of deep neural networks T Salimans, DP Kingma arXiv preprint arXiv:1602.07868, 2016 | 1050 | 2016 |
Improving variational inference with inverse autoregressive flow DP Kingma, T Salimans, R Jozefowicz, X Chen, I Sutskever, M Welling arXiv preprint arXiv:1606.04934, 2016 | 965 | 2016 |
Evolution strategies as a scalable alternative to reinforcement learning T Salimans, J Ho, X Chen, S Sidor, I Sutskever arXiv preprint arXiv:1703.03864, 2017 | 764 | 2017 |
Variational dropout and the local reparameterization trick DP Kingma, T Salimans, M Welling arXiv preprint arXiv:1506.02557, 2015 | 682 | 2015 |
Pixelcnn++: Improving the pixelcnn with discretized logistic mixture likelihood and other modifications T Salimans, A Karpathy, X Chen, DP Kingma arXiv preprint arXiv:1701.05517, 2017 | 443 | 2017 |
Variational lossy autoencoder X Chen, DP Kingma, T Salimans, Y Duan, P Dhariwal, J Schulman, ... arXiv preprint arXiv:1611.02731, 2016 | 421 | 2016 |
Markov chain monte carlo and variational inference: Bridging the gap T Salimans, D Kingma, M Welling International Conference on Machine Learning, 1218-1226, 2015 | 395 | 2015 |
Dota 2 with large scale deep reinforcement learning C Berner, G Brockman, B Chan, V Cheung, P Dębiak, C Dennison, ... arXiv preprint arXiv:1912.06680, 2019 | 187 | 2019 |
Fixed-form variational posterior approximation through stochastic linear regression T Salimans, DA Knowles Bayesian Analysis 8 (4), 837-882, 2013 | 180 | 2013 |
Improving GANs Using Optimal Transport T Salimans, H Zhang, A Radford, D Metaxas International Conference on Learning Representations (ICLR), 2018 | 140 | 2018 |
Learning Montezuma’s Revenge from a single demonstration T Salimans, R Chen Deep RL Workshop, Neural Information Processing Systems (NeurIPS), 2018 | 52 | 2018 |
How good is the bayes posterior in deep neural networks really? F Wenzel, K Roth, BS Veeling, J Świątkowski, L Tran, S Mandt, J Snoek, ... arXiv preprint arXiv:2002.02405, 2020 | 36 | 2020 |
Variable selection and functional form uncertainty in cross-country growth regressions T Salimans Journal of Econometrics 171 (2), 267-280, 2012 | 25 | 2012 |
Policy gradient search: Online planning and expert iteration without search trees T Anthony, R Nishihara, P Moritz, T Salimans, J Schulman arXiv preprint arXiv:1904.03646, 2019 | 17 | 2019 |
Metnet: A neural weather model for precipitation forecasting CK Sønderby, L Espeholt, J Heek, M Dehghani, A Oliver, T Salimans, ... arXiv preprint arXiv:2003.12140, 2020 | 14 | 2020 |
Axial attention in multidimensional transformers J Ho, N Kalchbrenner, D Weissenborn, T Salimans arXiv preprint arXiv:1912.12180, 2019 | 14 | 2019 |
The likelihood of mixed hitting times JH Abbring, T Salimans arXiv preprint arXiv:1905.03463, 2019 | 13 | 2019 |
OpenAI Post on Generative Models A Karpathy, P Abbeel, G Brockman, P Chen, V Cheung, R Duan, ... URL https://blog. openai. com/generative-models, 2016 | 13* | 2016 |