Gemini: a family of highly capable multimodal models G Team, R Anil, S Borgeaud, Y Wu, JB Alayrac, J Yu, R Soricut, ... arXiv preprint arXiv:2312.11805, 2023 | 1389 | 2023 |
Libri-light: A benchmark for asr with limited or no supervision J Kahn, M Riviere, W Zheng, E Kharitonov, Q Xu, PE Mazaré, J Karadayi, ... ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and …, 2020 | 625 | 2020 |
Open catalyst 2020 (OC20) dataset and community challenges L Chanussot, A Das, S Goyal, T Lavril, M Shuaibi, M Riviere, K Tran, ... Acs Catalysis 11 (10), 6059-6072, 2021 | 475 | 2021 |
VoxPopuli: A large-scale multilingual speech corpus for representation learning, semi-supervised learning and interpretation C Wang, M Riviere, A Lee, A Wu, C Talnikar, D Haziza, M Williamson, ... arXiv preprint arXiv:2101.00390, 2021 | 411 | 2021 |
Gemma: Open models based on gemini research and technology G Team, T Mesnard, C Hardin, R Dadashi, S Bhupatiraju, S Pathak, ... arXiv preprint arXiv:2403.08295, 2024 | 388 | 2024 |
Unsupervised pretraining transfers well across languages M Riviere, A Joulin, PE Mazaré, E Dupoux ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and …, 2020 | 216 | 2020 |
Data augmenting contrastive learning of speech representations in the time domain E Kharitonov, M Rivière, G Synnaeve, L Wolf, PE Mazaré, M Douze, ... 2021 IEEE Spoken Language Technology Workshop (SLT), 215-222, 2021 | 125 | 2021 |
The zero resource speech benchmark 2021: Metrics and baselines for unsupervised spoken language modeling TA Nguyen, M de Seyssel, P Rozé, M Rivière, E Kharitonov, A Baevski, ... arXiv preprint arXiv:2011.11588, 2020 | 99 | 2020 |
An introduction to electrocatalyst design using machine learning for renewable energy storage CL Zitnick, L Chanussot, A Das, S Goyal, J Heras-Domingo, C Ho, W Hu, ... arXiv preprint arXiv:2010.09435, 2020 | 84 | 2020 |
Gdpp: Learning diverse generations using determinantal point processes M Elfeki, C Couprie, M Riviere, M Elhoseiny International conference on machine learning, 1774-1783, 2019 | 71 | 2019 |
Textless speech emotion conversion using discrete and decomposed representations F Kreuk, A Polyak, J Copet, E Kharitonov, TA Nguyen, M Rivière, WN Hsu, ... arXiv preprint arXiv:2111.07402, 2021 | 60 | 2021 |
The zero resource speech challenge 2021: Spoken language modelling E Dunbar, M Bernard, N Hamilakis, TA Nguyen, M De Seyssel, P Rozé, ... arXiv preprint arXiv:2104.14700, 2021 | 48 | 2021 |
Fully parallel hyperparameter search: Reshaped space-filling ML Cauwet, C Couprie, J Dehos, P Luc, J Rapin, M Riviere, F Teytaud, ... International Conference on Machine Learning, 1338-1348, 2020 | 28 | 2020 |
Towards unsupervised learning of speech features in the wild M Rivière, E Dupoux 2021 IEEE Spoken Language Technology Workshop (SLT), 156-163, 2021 | 25 | 2021 |
Gemma 2: Improving open language models at a practical size G Team, M Riviere, S Pathak, PG Sessa, C Hardin, S Bhupatiraju, ... arXiv preprint arXiv:2408.00118, 2024 | 23 | 2024 |
Inspirational adversarial image generation B Rozière, M Riviere, O Teytaud, J Rapin, Y LeCun, C Couprie IEEE Transactions on Image Processing 30, 4036-4045, 2021 | 22 | 2021 |
Brouhaha: multi-task training for voice activity detection, speech-to-noise ratio, and C50 room acoustics estimation M Lavechin, M Métais, H Titeux, A Boissonnet, J Copet, M Rivière, ... 2023 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), 1-7, 2023 | 18 | 2023 |
ASR4REAL: An extended benchmark for speech models M Riviere, J Copet, G Synnaeve arXiv preprint arXiv:2110.08583, 2021 | 14 | 2021 |
Learned force fields are ready for ground state catalyst discovery M Schaarschmidt, M Riviere, AM Ganose, JS Spencer, AL Gaunt, ... arXiv preprint arXiv:2209.12466, 2022 | 12 | 2022 |
Correction to “the open catalyst 2020 (OC20) dataset and community challenges” L Chanussot, A Das, S Goyal, T Lavril, M Shuaibi, M Riviere, K Tran, ... Acs Catalysis 11 (21), 13062-13065, 2021 | 9 | 2021 |