Folgen
Xiaodong Yang
Xiaodong Yang
NVIDIA Research
Bestätigte E-Mail-Adresse bei nvidia.com - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume
D Sun, X Yang, MY Liu, J Kautz
Proceedings of the IEEE conference on computer vision and pattern …, 2018
17852018
Mocogan: Decomposing motion and content for video generation
S Tulyakov, MY Liu, X Yang, J Kautz
Proceedings of the IEEE conference on computer vision and pattern …, 2018
8642018
Recognizing actions using depth motion maps-based histograms of oriented gradients
X Yang, C Zhang, YL Tian
Proceedings of the 20th ACM international conference on Multimedia, 1057-1060, 2012
6692012
Joint discriminative and generative learning for person re-identification
Z Zheng, X Yang, Z Yu, L Zheng, Y Yang, J Kautz
proceedings of the IEEE/CVF conference on computer vision and pattern …, 2019
6372019
Eigenjoints-based action recognition using naive-bayes-nearest-neighbor
X Yang, YL Tian
2012 IEEE computer society conference on computer vision and pattern …, 2012
6362012
Online detection and classification of dynamic hand gestures with recurrent 3d convolutional neural network
P Molchanov, X Yang, S Gupta, K Kim, S Tyree, J Kautz
Proceedings of the IEEE conference on computer vision and pattern …, 2016
5822016
Super Normal Vector for Activity Recognition Using Depth Sequences
X Yang, YL Tian
Computer Vision and Pattern Recognition (CVPR), 2014
4482014
Effective 3d action recognition using eigenjoints
X Yang, YL Tian
Journal of Visual Communication and Image Representation 25 (1), 2-11, 2014
3932014
Cityflow: A city-scale benchmark for multi-target multi-camera vehicle tracking and re-identification
Z Tang, M Naphade, MY Liu, X Yang, S Birchfield, S Wang, R Kumar, ...
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2019
2922019
Self-supervised spatiotemporal feature learning via video rotation prediction
L Jing, X Yang, J Liu, Y Tian
arXiv preprint arXiv:1811.11387, 2018
185*2018
Models matter, so does training: An empirical study of cnns for optical flow estimation
D Sun, X Yang, MY Liu, J Kautz
IEEE transactions on pattern analysis and machine intelligence 42 (6), 1408-1423, 2019
1572019
Joint disentangling and adaptation for cross-domain person re-identification
Y Zou, X Yang, Z Yu, BVKV Kumar, J Kautz
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23 …, 2020
1532020
Robust and effective component-based banknote recognition for the blind
FM Hasanuzzaman, X Yang, YL Tian
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and …, 2012
1472012
Pamtri: Pose-aware multi-task learning for vehicle re-identification using highly randomized synthetic data
Z Tang, M Naphade, S Birchfield, J Tremblay, W Hodge, R Kumar, ...
Proceedings of the IEEE/CVF International Conference on Computer Vision, 211-220, 2019
1402019
Instance-aware, context-focused, and memory-efficient weakly supervised object detection
Z Ren, Z Yu, X Yang, MY Liu, YJ Lee, AG Schwing, J Kautz
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020
1332020
The 5th ai city challenge
M Naphade, S Wang, DC Anastasiu, Z Tang, MC Chang, X Yang, Y Yao, ...
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021
1302021
Dancing to music
HY Lee, X Yang, MY Liu, TC Wang, YD Lu, MH Yang, J Kautz
Advances in neural information processing systems 32, 2019
1292019
Super normal vector for human activity recognition with depth cameras
X Yang, YL Tian
IEEE transactions on pattern analysis and machine intelligence 39 (5), 1028-1039, 2016
1272016
Simulating content consistent vehicle datasets with attribute descent
Y Yao, L Zheng, X Yang, M Naphade, T Gedeon
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23 …, 2020
1262020
Step: Spatio-temporal progressive learning for video action detection
X Yang, X Yang, MY Liu, F Xiao, LS Davis, J Kautz
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2019
1172019
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20