Marcin Moczulski
Marcin Moczulski
Adresse e-mail validée de stcatz.ox.ac.uk
Titre
Citée par
Citée par
Année
Deep fried convnets
Z Yang, M Moczulski, M Denil, N de Freitas, A Smola, L Song, Z Wang
Oral presentation at ICCV 2015 (Proceedings of the IEEE International …, 2015
2742015
Noisy activation functions
C Gulcehre, M Moczulski, M Denil, Y Bengio
Published at ICML 2016 (International conference on machine learning), 3059-3068, 2016
1872016
Acdc: A structured efficient linear layer
M Moczulski, M Denil, J Appleyard, N de Freitas
Published at ICLR 2016 (International Conference on Learning Representations), 2015
852015
Mollifying networks
C Gulcehre, M Moczulski, F Visin, Y Bengio
Published at ICLR 2017, 2016
442016
Contingency-Aware Exploration in Reinforcement Learning
J Choi, Y Guo, ML Moczulski, J Oh, N Wu, M Norouzi, H Lee
Published at ICLR 2019, 2019
302019
Adasecant: Robust adaptive secant method for stochastic gradient
C Gulcehre, M Moczulski, Y Bengio
Published at IJCNN 2017, 2014
152014
A robust adaptive stochastic gradient method for deep learning
C Gulcehre, J Sotelo, M Moczulski, Y Bengio
2017 International Joint Conference on Neural Networks (IJCNN), 125-132, 2017
122017
Self-imitation learning via trajectory-conditioned policy for hard-exploration tasks
Y Guo, J Choi, M Moczulski, S Bengio, M Norouzi, H Lee
arXiv preprint arXiv:1907.10247, 2019
22019
Efficient exploration with self-imitation learning via trajectory-conditioned policy
Y Guo, J Choi, M Moczulski, S Bengio, M Norouzi, H Lee
22019
A Controller-Recognizer Framework: How necessary is recognition for control?
M Moczulski, K Xu, A Courville, K Cho
Published at ICLR 2016 workshop, 2015
22015
Memory Based Trajectory-conditioned Policies for Learning from Sparse Rewards
Y Guo, J Choi, M Moczulski, S Feng, S Bengio, M Norouzi, H Lee
Advances in Neural Information Processing Systems 33, 2020
2020
Memory Based Trajectory-conditioned Policies for Learning from Sparse Rewards Mark
Y Guo, J Choi, M Moczulski, S Feng, S Bengio, M Norouzi, H Lee
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–12